Microfluidics and Nanofluidics

, Volume 10, Issue 1, pp 29–35 | Cite as

Transport in two-dimensional paper networks

  • Elain Fu
  • Stephen A. Ramsey
  • Peter Kauffman
  • Barry Lutz
  • Paul Yager
Research Paper

Abstract

Two-dimensional paper networks (2DPNs) hold great potential for transcending the capabilities and performance of today’s paper-based analytical devices. Specifically, 2DPNs enable sophisticated multi-step chemical processing sequences for sample pretreatment and analysis at a cost and ease-of-use that make them appropriate for use in settings with low resources. A quantitative understanding of flow in paper networks is essential to realize the potential of these networks. In this report, we provide a framework for understanding flow in simple 2DPNs using experiments, analytical expressions, and computational simulations.

Keywords

Two-dimensional paper networks Paper microfluidics Fluid transport 

Supplementary material

10404_2010_643_MOESM1_ESM.docx (466 kb)
Supplementary material 1 (DOCX 464 kb)

References

  1. Alava M, Niskanen K (2006) The physics of paper. Rep Prog Phys 69(3):669–723CrossRefGoogle Scholar
  2. Auriault J, Borne L et al (1985) Dynamics of porous saturated media, checking of the generalized law of Darcy. J Acoust Soc Am 77(5):1641–1650MATHCrossRefGoogle Scholar
  3. Cabrera C, Finlayson B et al (2001) Formation of natural pH gradients in a microfluidic device under flow conditions: model and experimental validation. Anal Chem 73:658–666CrossRefGoogle Scholar
  4. Darcy H (1856) Les Fontaines Publiques de la Ville de Dijon. V. Dalmont, ParisGoogle Scholar
  5. Fenton E, Mascarenas M et al (2009) Multiplex lateral-flow test strips fabricated by two-dimensional shaping. Appl Mater Interfaces 1(1):124–129CrossRefGoogle Scholar
  6. Fu E, Lutz B et al (2010) Controlled reagent transport in disposable 2D paper networks. Lab Chip 10:918–920CrossRefGoogle Scholar
  7. Fujita H (1952) On the distribution of liquid ascending in a filter paper. J Phys Chem 56(5):625–629CrossRefGoogle Scholar
  8. Holde KEV (1985) Physical biochemistry. Englewood Cliffs, Prentice HallGoogle Scholar
  9. Jackson G, James D (1986) The permeability of fibrous porous materials. Can J Chem Eng 64:364–374CrossRefGoogle Scholar
  10. Martinez AW, Phillips ST et al (2007) Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angewandte Chemie (International Edition) 46(8):1318–1320CrossRefGoogle Scholar
  11. Martinez AW, Phillips ST et al (2008a) Three-dimensional microfluidic devices fabricated in layered paper and tape. Proc Natl Acad Sci USA 105(50):19606–19611CrossRefGoogle Scholar
  12. Martinez AW, Phillips ST et al (2008b) FLASH: a rapid method for prototyping paper-based microfluidic devices. Lab Chip 8(12):2146–2150CrossRefGoogle Scholar
  13. Martinez AW, Phillips ST et al (2010) Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal Chem 82(1):3–10CrossRefGoogle Scholar
  14. Medina A, Perez-Rosales C et al (2001) Imbibition in pieces of paper with different shapes. Revista Mexicana De Fisica 47(6):537–541Google Scholar
  15. Mendez S, Fenton EM et al (2010) Imbibition in porous membranes of complex shape: quasi-stationary flow in thin rectangular segments. Langmuir 26(2):1380–1385CrossRefGoogle Scholar
  16. Nordbotten JM, Celia MA et al (2007) Interpretation of macroscale variables in Darcy’s law. Water Resour Res 43:W08430.1–W08430.9Google Scholar
  17. Peek RL, McLean DA (1934) Capillary penetration of fibrous materials. Ind Eng Chem 6(2):85–90CrossRefGoogle Scholar
  18. Rasband WS (1997–2010) ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA. http://rsb.info.nih.gov/ij/
  19. Spicar-Mihalic P, Stevens D et al (2007) Progress toward a flow-through membrane ELISA in a microfluidic format. In: Micro total analysis systems: proceedings of [Mu]TAS 2007: Eleventh International Conference on Miniaturized Systems for Chemistry and Life Sciences, Paris, France, 7–11 October 2007, Chemical and Biological Microsystems Society, San Diego, CA, pp 667–669Google Scholar
  20. Washburn EW (1921) The dynamics of capillary flow. Phys Rev 17(3):273–283CrossRefGoogle Scholar
  21. Williams R (1980) The capillary without walls. J Colloid Interface Sci 79(1):287–288CrossRefGoogle Scholar
  22. Zhao WA, van den Berg A (2008) Lab on paper. Lab Chip 8(12):1988–1991CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Elain Fu
    • 1
  • Stephen A. Ramsey
    • 2
  • Peter Kauffman
    • 1
  • Barry Lutz
    • 1
  • Paul Yager
    • 1
  1. 1.Department of BioengineeringUniversity of WashingtonSeattleUSA
  2. 2.Institute for Systems BiologySeattleUSA

Personalised recommendations