Microfluidics and Nanofluidics

, Volume 9, Issue 4–5, pp 755–763

Dielectrophoretically assembled particles: feasibility for optofluidic systems

  • Khashayar Khoshmanesh
  • Chen Zhang
  • Jos L. Campbell
  • Aminuddin A. Kayani
  • Saeid Nahavandi
  • Arnan Mitchell
  • Kourosh Kalantar-zadeh
Research Paper


This work presents the dielectrophoretic manipulation of sub-micron particles suspended in water and the investigation of their optical responses using a microfluidic system. The particles are made of silica and have different diameters of 600, 450, and 250 nm. Experiments show a very interesting feature of the curved microelectrodes, in which the particles are pushed toward or away from the microchannel centerline depending on their levitation heights, which is further analyzed by numerical simulations. In doing so, applying an AC signal of 12 Vp–p and 5 MHz across the microelectrodes along with a flow rate of 1 μl/min within the microchannel leads to the formation of a tunable band of particles along the centerline. Experiments show that the 250 nm particles guide the longitudinal light along the microchannel due to their small scattering. This arrangement is employed to study the feasibility of developing an optofluidic system, which can be potentially used for the formation of particles-core/liquid-cladding optical waveguides.


Dielectrophoresis Manipulation Microfluidics Optofluidics Silica particles 


  1. Bernini R, De Nuccio E, Minardo A, Zeni L, Sarro PM (2008) Liquid-core/liquid-cladding integrated silicon ARROW waveguides. Opt Commun 281(8):2062–2066CrossRefGoogle Scholar
  2. Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. Wiley, New YorkGoogle Scholar
  3. Cummins CM, Koivunen ME, Stephanian A, Gee SJ, Hammock BD, Kennedy IM (2006) Application of europium(III) chelate-dyed nanoparticle labels in a competitive atrazine fluoroimmunoassay on an ITO waveguide. Biosens Bioelectron 21(7):1077–1085CrossRefGoogle Scholar
  4. de Matos CJS, Cordeiro CMB, dos Santos EM, Ong JSK, Bozolan A, Cruz CHB (2007) Liquid-core, liquid-cladding photonic crystal fibers. Opt Express 15(18):11207–11212CrossRefGoogle Scholar
  5. Doh I, Cho YH (2005) A continuous cell separation chip using hydrodynamic dielectrophoresis (DEP) process. Sens Actuators A 121(1):59–65CrossRefGoogle Scholar
  6. Hahn DW (2009) Light scattering theory. openpdf.com/ebook/light-theory-pdf.html, University of Florida, Gainesville
  7. Hughes MP, Morgan H, Flynn MF (1999) The dielectrophoretic behavior of submicron latex spheres: Influence of surface conductance. J Colloid Interface Sci 220(2):454–457CrossRefGoogle Scholar
  8. Jones TB (2003) Electromechanics of particles. Cambridge University Press, CambridgeGoogle Scholar
  9. Kalantar-zadeh K, Fry B (2007) Nanotechnology enabled sensors. Springer, New YorkGoogle Scholar
  10. Kang YJ, Li DQ, Kalams SA, Eid JE (2008) DC-dielectrophoretic separation of biological cells by size. Biomed Microdev 10(2):243–249CrossRefGoogle Scholar
  11. Kerker M (1969) The scattering of light and other electromagnetic radiation. Academic, New YorkGoogle Scholar
  12. Khlebtsov BN, Khanadeev VA, Khlebtsov NG (2008) Determination of the size, concentration, and refractive index of silica nanoparticles from turbidity spectra. Langmuir 24(16):8964–8970CrossRefGoogle Scholar
  13. Khoshmanesh K, Zhang C, Tovar-Lopez FJ, Nahavandi S, Baratchi S, Kalantar-zadeh K, Mitchell A (2009) Dielectrophoretic manipulation and separation of microparticles using curved microelectrodes. Electrophoresis 30(21):3707–3717CrossRefGoogle Scholar
  14. Khoshmanesh K, Zhang C, Tovar-Lopez FJ, Nahavandi S, Baratchi S, Mitchell A, Kalantar-zadeh K (2010) Dielectrophoretic activated cell sorter based on curved microelectrodes. Microfluids Nanofluidics. doi:10.1007/s10404-009-0558-7
  15. Khusid B, Acrivos A (1995) Effects of conductivity in electric field-induced aggregation in electrorheogical fluids. Phys Rev E 52(2):1669–1693CrossRefGoogle Scholar
  16. Kumar A, Acrivos A, Khusid B, Jacqmin D (2007) Electric field-driven formation of particle concentration fronts in suspensions. Fluid Dyn Res 39(1–3):169–192MATHCrossRefMathSciNetGoogle Scholar
  17. Lao CS, Liu J, Gao PX, Zhang LY, Davidovic D, Tummala R, Wang ZL (2006) ZnO nanobelt/nanowire Schottky diodes formed by dielectrophoresis alignment across Au electrodes. Nano Lett 6(2):263–266CrossRefGoogle Scholar
  18. Morgan H, Green NG (2003) AC electrokinetics: colloids and nanoparticles. Research Studies Press Ltd., BaldockGoogle Scholar
  19. Ofir Y, Samanta B, Rotello VM (2008) Polymer and biopolymer mediated self-assembly of gold nanoparticles. Chem Soc Rev 37(9):1814–1823CrossRefGoogle Scholar
  20. Paschotta R (2008) Encyclopedia of laser physics and technology. Wiley-VCH, BerlinGoogle Scholar
  21. Conroy RS, Mayers BT, Vezenov DV, Wolfe DB, Prentisst M and GMW (2005) Optical waveguiding in suspensions of dielectric particles. Appl Opt 44(36):7853–7857Google Scholar
  22. Schmidt BS, Yang AHJ, Erickson D, Lipson M (2007) Optofluidic trapping and transport on solid core waveguides within a microfluidic device. Opt Express 15(22):14322–14334CrossRefGoogle Scholar
  23. Stober W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in micron size range. J Colloid Interf Sci 26(1):62–69CrossRefGoogle Scholar
  24. Wang SL, Fang ZL (2005) Integrating functional components into capillary electrophoresis systems using liquid-core waveguides. Anal Bioanal Chem 382(8):1747–1750CrossRefGoogle Scholar
  25. Webb KJ, Li J (2005) Resonant slot optical guiding in metallic nanoparticle chains. Phys Rev B 72(20):201402Google Scholar
  26. Wolfe DB, Conroy RS, Garstecki P, Mayers BT, Fischbach MA, Paul KE, Prentiss M, Whitesides GM (2004) Dynamic control of liquid-core/liquid-cladding optical waveguides. Proc Natl Acad Sci USA 101(34):12434–12438CrossRefGoogle Scholar
  27. Wolfe DB, Vezenov DV, Mayers BT, Whitesides GM (2005) Diffusion-controlled optical elements for optofluidics. Appl Phys Lett 87:181105Google Scholar
  28. Yang AHJ, Erickson D (2008) Stability analysis of optofluidic transport on solid-core waveguiding structures. Nanotechnology 19(4):045704 Google Scholar
  29. Zhang C, Khoshmanesh K, Mitchell A, Kalantar-zadeh K (2009) Dielectrophoresis for the manipulation of micro/nano particles in microfluidic systems. Anal Bioanal Chem 396(1):401–420CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Khashayar Khoshmanesh
    • 1
  • Chen Zhang
    • 2
  • Jos L. Campbell
    • 3
  • Aminuddin A. Kayani
    • 2
  • Saeid Nahavandi
    • 1
  • Arnan Mitchell
    • 2
  • Kourosh Kalantar-zadeh
    • 2
    • 4
  1. 1.Centre for Intelligent Systems ResearchDeakin UniversityGeelongAustralia
  2. 2.School of Electrical and Computer EngineeringRMIT UniversityMelbourneAustralia
  3. 3.School of Applied SciencesRMIT UniversityMelbourneAustralia
  4. 4.Chemical Engineering DepartmentMassachusetts Institute of Technology (MIT)CambridgeUSA

Personalised recommendations