Microfluidics and Nanofluidics

, Volume 8, Issue 6, pp 709–726 | Cite as

Advances and applications on microfluidic velocimetry techniques

  • Stuart J. Williams
  • Choongbae Park
  • Steven T. Wereley


The development and analysis of the performance of microfluidic components for lab-on-a-chip devices are becoming increasingly important because microfluidic applications are continuing to expand in the fields of biology, nanotechnology, and manufacturing. Therefore, the characterization of fluid behavior at the scales of micro- and nanometer levels is essential. A variety of microfluidic velocimetry techniques like micron-resolution Particle Image Velocimetry (μPIV), particle-tracking velocimetry (PTV), and others have been developed to characterize such microfluidic systems with spatial resolutions on the order of micrometers or less. This article discusses the fundamentals of established velocimetry techniques as well as the technical applications found in literature.


Micron-resolution particle image velocimetry (μPIV) Microfluidics Particle tracking velocimetry (PTV) Microchannels 


  1. Adrian RJ (1991) Particle-imaging techniques for experimental fluid mechanics. Annu Rev Fluid Mech 23:261–304CrossRefGoogle Scholar
  2. Adrian RJ (1996) Bibliography of particle image velocimetry using imaging methods: 1917–1995. University of Illinois at Urbana-Champaign, Urbana, ILGoogle Scholar
  3. Adrian RJ (2005) 20 years of particle image velocimetry. Exp Fluids 39:159–169CrossRefGoogle Scholar
  4. Anderson EJ, Falls TD et al (2006) The imperative for controlled mechanical stresses in unraveling cellular mechanisms of mechanotransduction. Biomed Eng Online 5:27Google Scholar
  5. Bitsch L, Olesen LH et al (2003) Micro PIV on blood flow in a microchannel. 7th international conference on miniaturized chemical and biochemical analysis systems. Squaw Valley, CAGoogle Scholar
  6. Bitsch L, Olesen LH et al (2005) Micro particle-image velocimetry of bead suspensions and blood flows. Exp Fluids 39(3):505–511CrossRefGoogle Scholar
  7. Born M, Wolf E (1999) Principles of optics: electromagnetic theory of propagation, interference and diffraction of light. Cambridge [England]; Cambridge University Press, New YorkGoogle Scholar
  8. Bourdon CJ, Olsen MG et al (2004) Validation of analytical solution for depth of correlation in microscopic particle image velocimetry. Meas Sci Technol 15:318–327CrossRefGoogle Scholar
  9. Bourdon CJ, Olsen MG et al (2006) The depth of correlation in micro-PIV for high numerical aperture and immersion objectives. J Fluid Eng 128(4):883–886CrossRefGoogle Scholar
  10. Bown MR, MacInnes JM et al (2006) Three-dimensional, three-component velocity measurements using stereoscopic micro-PIV and PTV. Meas Sci Technol 17(8):2175–2185CrossRefGoogle Scholar
  11. Brown MR, Meinhart C (2006) AC electroosmotic flow in a DNA concentrator. Microfluid Nanofluid 2:513–523CrossRefGoogle Scholar
  12. Chamarthy P, Garimella SV et al (2009) Non-intrusive temperature measurement using microscale visualization techniques. Exp Fluids 47:159–170CrossRefGoogle Scholar
  13. Chuang HS, Wereley ST (2007) In vitro wall shear stress measurements for microfluid flows by using second-order SPE micro-PIV. Proceedings of IMECE2007, 2007 ASME international mechanical engineering congress and exposition. ASME, Seattle, WA, USAGoogle Scholar
  14. Cowen EA, Monismith SG (1997) A hybrid digital particle tracking velocimetry technique. Exp Fluids 22:199–211CrossRefGoogle Scholar
  15. Csendes A, Szekely V et al (1996) Thermal mapping with liquid crystal method. Microelectron Eng 31:281–290CrossRefGoogle Scholar
  16. Curtin DM, Newport DT et al (2006) Utilising μ-PIV and pressure measurements to determine the viscosity of a DNA solution in a microchannel. Exp Thermal Fluid Sci 30:843–852CrossRefGoogle Scholar
  17. Dabiri D (2009) Digital particle image thermometry/velocimetry: a review. Exp Fluids 46:191–241CrossRefGoogle Scholar
  18. Devasenathipathy S, Santiago JG (2002) Particle tracking techniques for electrokinetic microchannel flows. Anal Chem 74:3704–3713CrossRefGoogle Scholar
  19. Devasenathipathy S, Santiago JG et al (2003) Particle imaging techniques for microfabricated fluidic systems. Exp Fluids 34(4):504–514Google Scholar
  20. Dubsky S, Fouras A et al (2008) Three component, three dimensional X-ray particle image velocimetry using multiple projections. 14th international symposium on applications of laser techniques to fluid mechanics. Lisbon, PortugalGoogle Scholar
  21. Freudenthal PE, Pommer M et al (2007) Quantum nanospheres for sub-micron particle image velocimetry. Exp Fluids 43(4):525–533CrossRefGoogle Scholar
  22. Fujisawa N, Funatani S et al (2005) Scanning liquid-crystal thermometry and stereo velocimetry for simultaneous three-dimensional measurement of temperature and velocity field in a turbulent Rayleigh-Bernard convection. Exp Fluids 38(3):291–303CrossRefGoogle Scholar
  23. Gomez R, Bashir R et al (2001) Microfluidic biochip for impedance spectroscopy of biological species. Biomed Microdevices 3(3):201–209CrossRefGoogle Scholar
  24. Gorti VM, Shang H et al (2008) Immunoassays in nanoliter volume reactors using fluorescent particle diffusometry. Langmuir 24(6):2947–2952CrossRefGoogle Scholar
  25. Grier DG (2003) A revolution in optical manipulation. Nature 424(6950):810–816CrossRefGoogle Scholar
  26. Guasto JS, Breuer KS (2008) Simultaneous, ensemble-averaged measurement of near-wall temperature and velocity in steady micro-flows using single quantum dot tracking. Exp Fluids 45:157–166CrossRefGoogle Scholar
  27. Guasto JS, Huang P et al (2006) Statistical particle tracking velocimetry using molecular and quantum dot tracer particles. Exp Fluids 41:869–880CrossRefGoogle Scholar
  28. Gui L, Lindken R et al (1997a) Phase-separated PIV measurements of the flow around systems of bubbles rising in water. ASME-FEDSM97-3103, ASME. New York, USAGoogle Scholar
  29. Gui L, Merzkirch W et al (1997b) Evaluation of low image density PIV recordings with the MQD method and application to the flow in a liquid bridge. J Flow Visual Image Process 4(4):333–343Google Scholar
  30. Hagsater SM, Westergaard CH et al (2008) A compact viewing configuration for stereoscopic micro-PIV utilizing mm-sized mirrors. Exp Fluids 45:1015–1021CrossRefGoogle Scholar
  31. Han G, Breuer KS (2001) Infrared PIV for measurement of fluid and solid motion inside opaque silicon microdevices. Proceedings of 4th international symposium on particle image velocimetry. Gttingen, GermanyGoogle Scholar
  32. Hirono T, Arimoto H et al (2008) Microfluidic image cytometry for measuring number and sizes of biological cells flowing through a microchannel using the micro-PIV technique. Meas Sci Technol 19(2):025401-1–025401-13Google Scholar
  33. Hoffmann M, Schluter M et al (2006) Experimental investigation of liquid-liquid mixing in T-shaped micro-mixers using μ-LIF and μ-PIV. Chem Eng Sci 61:2968–2976CrossRefGoogle Scholar
  34. Hohenegger C, Mucha PJ (2007) Statistical reconstruction of velocity profiles for nanoparticle image velocimetry. Siam J Appl Math 68(1):239–252zbMATHMathSciNetCrossRefGoogle Scholar
  35. Hohreiter V, Wereley ST et al (2002) Cross-correlation analysis for temperature measurement. Meas Sci Technol 13(7):1072–1078CrossRefGoogle Scholar
  36. Hove JR, Koster RW et al (2003) Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature 421(6919):172–177CrossRefGoogle Scholar
  37. Huang H, Dabiri D et al (1997) On errors of digital particle image velocimetry. Meas Sci Technol 8:1427–1440CrossRefGoogle Scholar
  38. Ichiyanagi M, Sato Y et al (2007) Optically sliced measurement of velocity and pH distribution in microchannel. Exp Fluids 43:425–435CrossRefGoogle Scholar
  39. Ichiyanagi M, Sasaki S et al (2009) Micro-PIV/LIF measurements on electrokinetically driven flow in surface modified microchannels. J Micromech Microeng 19:045021CrossRefGoogle Scholar
  40. Jin S, Huang P et al (2004) Near-surface velocimetry using evanescent wave illumination. Exp Fluids 37:825–833CrossRefGoogle Scholar
  41. Jones BJ, Lee P-S et al (2008) Infrared micro-particle image velocimetry measurements and predictions of flow distribution in a microchannel heat sink. Int J Heat Mass Transfer 51:1877–1887CrossRefGoogle Scholar
  42. Joseph P, Tabeling P (2005) Direct measurement of the apparent slip length. Phys Rev E 71(3):035303Google Scholar
  43. Kähler CJ, Scholz U et al (2006) Wall-shear-stress and near-wall turbulence measurements up to single pixel resolution by means of long-distance micro-PIV. Exp Fluids 41:327–341CrossRefGoogle Scholar
  44. Karri S, Charonko J et al (2009) Robust wall gradient estimation using radial basis functions and proper orthogonal decomposition (POD) for particle image velocimetry (PIV) measured fields. Meas Sci Technol 20:045401CrossRefGoogle Scholar
  45. Keane RD, Adrian RJ (1992) Theory of cross-correlation analysis of PIV images. Appl Sci Res 49(3):191–215CrossRefGoogle Scholar
  46. Kihm KD, Banerjee A et al (2004) Near-wall hindered Brownian diffusion of nanoparticles examined by three-dimensional ratiometric total internal reflection fluorescence microscopy (3-D R-TIRFM). Exp Fluids 37:811–824CrossRefGoogle Scholar
  47. Kim MJ, Breuer KS (2007) Use of bacterial carpets to enhance mixing in microfluidic systems. J Fluid Eng 129:319–324CrossRefGoogle Scholar
  48. Kim HJ, Kihm KD (2002) Two-color (Rh-B & Rh-110) laser induced fluorescence (LIF) thermometry with sub-millimeter measurement resolution. J Heat Transfer-Trans Asme 124(4):596–596CrossRefGoogle Scholar
  49. Kim GB, Lee SJ (2006) X-ray PIV measurements of blood flows without tracer particles. Exp Fluids 41:195–200CrossRefGoogle Scholar
  50. Kinoshita H, Kaneda S et al (2007) Three-dimensional measurement and visualization of internal flow of a moving droplet using confocal micro-PIV. Lab Chip 7:338–346CrossRefGoogle Scholar
  51. Klank H, Goranovic G et al (2002) PIV measurements in a microfluidic 3D-sheathing structure with three-dimensional flow behaviour. J Micromech Microeng 12(6):862–869CrossRefGoogle Scholar
  52. Kumar A, Williams SJ et al (2008) Experiments on opto-electrically generated microfluidic vortices. Microfluid Nanofluidics. doi: 10.1007/s10404-008-0339-8
  53. Lee SJ, Kim GB (2003) X-ray particle image velocimetry for measuring quantitative flow information inside opaque objects. J Appl Phys 94(5):3620–3623CrossRefGoogle Scholar
  54. Lee SJ, Kim GB (2005) Synchrotron microimaging technique for measuring the velocity fields of real blood flows. J Appl Phys 97(6):064701Google Scholar
  55. Lee SJ, Kim S (2008a) Micro holographic PTV measurements of Dean flows in a curved micro-tube. 14th international symposium of laser techniques to fluid mechanics. Lisbon, PortugalGoogle Scholar
  56. Lee SJ, Kim Y (2008b) In vivo visualization of the water-refilling process in xylem vessels using X-ray micro-imaging. Ann Bot 101(4):595–602CrossRefGoogle Scholar
  57. Lee JY, Ji HS et al (2007) Micro-PIV measurements of blood flow in extraembryonic blood vessels of chicken embryos. Physiol Meas 28(10):1149–1162CrossRefGoogle Scholar
  58. Leonardo RD, Leach J et al (2006) Multipoint holographic optical velocimetry in microfluidic systems. Phys Rev Lett 96:134502CrossRefGoogle Scholar
  59. Li HF, Sadr R et al (2006) Multilayer nano-particle image velocimetry. Exp Fluids 41:185–194CrossRefGoogle Scholar
  60. Lima R, Wada S et al (2006) Confocal micro-PIV measurements of three-dimensional profiles of cell suspension flow in a square microchannel. Meas Sci Technol 17:797–808CrossRefGoogle Scholar
  61. Lima R, Wada S et al (2007) In vitro confocal micro-PIV measurements of blood flow in a square microchannel: the effect of the haematocrit on instantaneous velocity profiles. J Biomech 40(12):2752–2757CrossRefGoogle Scholar
  62. Lima R, Ishikawa T et al (2008a) Radial dispersion of red blood cells in blood flowing through glass capillaries: the role of hematocrit and geometry. J Biomech 41(10):2188–2196CrossRefGoogle Scholar
  63. Lima R, Wada S et al (2008b) In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system. Biomed Microdevices 10(2):153–167CrossRefGoogle Scholar
  64. Lin D, Angarita-Jaimes NC et al (2008) Three-dimensional particle imaging by defocusing method with an annular aperture. Opt Lett 33:905–907CrossRefGoogle Scholar
  65. Lindken R, Westerweel J et al (2005) Development of a self-calibrating stereo-μ-PIV system and its application to the three-dimensional flow in a T-shaped mixer. 6th international symposium on particle image velocimetry. Pasadena, CAGoogle Scholar
  66. Lindken R, Westerweel J et al (2006) Stereoscopic micro particle image velocimetry. Exp Fluids 41:161–171CrossRefGoogle Scholar
  67. Lindken R, Rossi M, et al (2009) Micro-particle image velocimetry (μPIV): recent developments, applications, and guidelines. Lab ChipGoogle Scholar
  68. Liu D, Garimella SV et al (2005) Infrared micro-particle image velocimetry in silicon-based microdevices. Exp Fluids 38:385–392CrossRefGoogle Scholar
  69. Long DS, Smith ML et al (2004) Microviscometry reveals reduced blood viscosity and altered shear rate and shear stress profiles in microvessels after hemodilution. Proc Natl Acad Sci USA 101(27):10060–10065CrossRefGoogle Scholar
  70. Lu HW, Bottausci F et al (2008) PIV investigation of 3-dimensional flow in drops actuated by EWOD. 21st IEEE international conference on micro electro mechanical systems (MEMS 2008). Tucson, AZGoogle Scholar
  71. Malsch D, Kielpinski M et al (2008) μPIV-analysis of Taylor flow in micro channels. Chem Eng J 135S:S166–S172CrossRefGoogle Scholar
  72. Meinhart CD, Zhang HS (2000) The flow structure inside a microfabricated inkjet printhead. J Microelectromech Syst 9(1):67–75CrossRefGoogle Scholar
  73. Meinhart CD, Wereley ST et al (1999) PIV measurements of a microchannel flow. Exp Fluids 27(5):414–419CrossRefGoogle Scholar
  74. Meinhart CD, Wereley ST et al (2000a) Volume illumination for two-dimensional particle image velocimetry. Meas Sci Technol 11(6):809–814CrossRefGoogle Scholar
  75. Meinhart CD, Wereley ST et al (2000b) A PIV algorithm for estimating time-averaged velocity fields. J Fluid Eng 122(2):285–289CrossRefGoogle Scholar
  76. Meinhart C, Wang DZ et al (2003) Measurement of AC electrokinetic flows. Biomed Microdevices 5:139–145CrossRefGoogle Scholar
  77. Muwanga R, Hassan I (2006) Local heat transfer measurements on a curved microsurface using liquid crystal thermography. J Thermophys Heat Transfer 20:884–894CrossRefGoogle Scholar
  78. Natrajan VK, Christensen KT (2009) Two-color laser-induced fluorescent thermometry for microfluidic systems. Meas Sci Technol 20(1):015401Google Scholar
  79. Neve N, Lingwood JK et al (2008) The μPIVOT: an integrated particle image velocimeter and optical tweezers instrument for microenvironment investigations. Meas Sci Technol 19(9):095403Google Scholar
  80. Olsen MG (2009) Directional dependence of depth of correlation due to in-plane fluid shear in microscopic particle image velocimetry. Meas Sci Technol 20(1):015402.1–015402.9Google Scholar
  81. Olsen MG, Adrian RJ (2000a) Brownian motion and correlation in particle image velocimetry. Opt Laser Technol 32(7–8):621–627CrossRefGoogle Scholar
  82. Olsen MG, Adrian RJ (2000b) Out-of-focus effects on particle image visibility and correlation in microscopic particle image velocimetry. Exp Fluids 29(7):S166–S174CrossRefGoogle Scholar
  83. Olsen MG, Bourdon CJ (2003) Out-of-plane motion effects in microscopic particle image velocimetry. J Fluids Eng-Trans Asme 125(5):895–901CrossRefGoogle Scholar
  84. Olsen MG, Bourdon CJ (2007) Random error due to Brownian motion in microscopic particle image velocimetry. Meas Sci Technol 18(7):1963–1972CrossRefGoogle Scholar
  85. Park JS, Kihm KD (2006a) Three-dimensional micro-PTV using deconvolution microscopy. Exp Fluids 40:491–499CrossRefGoogle Scholar
  86. Park JS, Kihm KD (2006b) Use of confocal laser scanning microscopy (CLSM) for depthwise resolved microscale-particle image velocimetry (mu-PIV). Opt Lasers Eng 44(3–4):208–223CrossRefGoogle Scholar
  87. Park CW, Kim GB et al (2004a) Micro-PIV measurements of blood flow in a microchannel. Conference on optical and diagnostics and sensing IV. San Jose, CAGoogle Scholar
  88. Park JS, Choi CK et al (2004b) Optically sliced micro-PIV using confocal laser scanning microscopy (CLSM). Exp Fluids 37(1):105–119CrossRefGoogle Scholar
  89. Park JS, Choi CK et al (2005) Temperature measurement for a nanoparticle suspension by detecting the Brownian motion using optical serial sectioning microscopy (OSSM). Meas Sci Technol 16(7):1418–1429MathSciNetCrossRefGoogle Scholar
  90. Pereira F, Lu J et al (2007) Microscale 3D flow mapping with μDDPIV. Exp Fluids 42(4):589–599CrossRefGoogle Scholar
  91. Petermeier H, Kowalczyk W et al (2007) Detection of microorganismic flows by linear and nonlinear optical methods and automatic correction of erroneous images artefacts and moving boundaries in image generating methods by a neuronumerical hybrid implementing the Taylor’s hypothesis as a priori knowledge. Exp Fluids 42(4):611–623CrossRefGoogle Scholar
  92. Peterson SD, Chuang HS et al (2008) Three-dimensional particle tracking using micro-particle image velocimetry hardware. Meas Sci Technol 19(11):115406.1–115406.8Google Scholar
  93. Poelma C, Vennemann P et al (2008) In vivo blood flow and wall shear stress measurements in the vitelline network. Exp Fluids 45:703–713CrossRefGoogle Scholar
  94. Poelma C, Heiden KVd et al (2009) Measurements of the wall shear stress distribution in the outflow tract of an embryonic chicken heart. J R Soc Interface 7(42):91–103CrossRefGoogle Scholar
  95. Pommer MS, Meinhart CD (2005) Shear-stress distribution surrounding individual adherent red cells in a microchannel measured using Micro-PIV. 6th international symposium on particle image velocimetry. Pasadena, CAGoogle Scholar
  96. Pommer MS, Kiehl AR et al (2007) A 3D-3C micro-PIV method. IEEE international conference of nano/micro engineered and molecular systems. Bangkok, ThailandGoogle Scholar
  97. Pouya S, Koochesfahani M et al (2005) Single quantum dot (QD) imaging of fluid flow near surfaces. Exp Fluids 39(4):784–786CrossRefGoogle Scholar
  98. Prasad AK, Adrian RJ (1993) Stereoscopic particle image velocimetry applied to liquid flows. Exp Fluids 15:49–60CrossRefGoogle Scholar
  99. Raffel M, Gharib M et al (1995) Feasibility study of three-dimensional PIV by correlating images of particles within parallel light sheet planes. Exp Fluids 19:69–77CrossRefGoogle Scholar
  100. Raffel M, Willert CE et al (2007) Particle image velocimetry: a practical guide. Springer, Berlin, New YorkGoogle Scholar
  101. Ravnic DJ, Zhang Y-Z et al (2006) Multi-image particle tracking velocimetry of the microcirculation using fluorescent nanoparticles. Microvasc Res 72:27–33CrossRefGoogle Scholar
  102. Robinson O, Rockwell D (1993) Construction of three-dimensional images of flow structure via particle tracking techniques. Exp Fluids 14:257–270CrossRefGoogle Scholar
  103. Ross D, Locascio LE (2003) Fluorescence thermometry in microfluidics. Temperature: its measurement and control in science and industry, vol 7Google Scholar
  104. Ross D, Gaitan M et al (2001) Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye. Anal Chem 73(17):4117–4123CrossRefGoogle Scholar
  105. Rossi M, Ekeberg I et al (2006) In vitro study of shear stress over endothelial cells by Micro Particle Image Velocimetry (μPIV). 13th Int. Symp Appl. laser techniques to fluid mechanics. Lisbon, PortugalGoogle Scholar
  106. Rossi M, Lindken R et al (2008) Single-cell level measurement of shape, shear stress distribution and gene expression of endothelial cells in microfluidic chips. 6th international conference on nanochannels, microchannels, and minichannels. Darmstadt, GermanyGoogle Scholar
  107. Sadr R, Yoda M et al (2004) An experimental study of electro-osmotic flow in rectangular microchannels. J Fluid Mech 506:357–367zbMATHCrossRefGoogle Scholar
  108. Sadr R, Li HF et al (2005) Impact of hindered Brownian diffusion on the accuracy of particle-image velocimetry using evanescent-wave illumination. Exp Fluids 38(1):90–98CrossRefGoogle Scholar
  109. Sadr R, Yoda M et al (2006) Velocity measurements inside the diffuse electric double layer in electro-osmotic flow. Appl Phys Lett 89(4):044103Google Scholar
  110. Sadr R, Hohenegger C et al (2007) Diffusion-induced bias in near-wall velocimetry. J Fluid Mech 577:443–456zbMATHCrossRefGoogle Scholar
  111. Sakakibara J, Adrian RJ (1999) Whole field measurement of temperature in water using two-color laser induced fluorescence. Exp Fluids 26(1–2):7–15CrossRefGoogle Scholar
  112. Santiago JG, Wereley ST et al (1998) A particle image velocimetry system for microfluidics. Exp Fluids 25(4):316–319CrossRefGoogle Scholar
  113. Satake S, Kunugi T et al (2005) Three-dimensional flow tracking in a micro channel with high time resolution using micro digital-holographic particle-tracking velocimetry. Opt Rev 12(6):442–444CrossRefGoogle Scholar
  114. Satake S, Kunugi T et al (2006) Measurements of 3D flow in a micro-pipe via micro digital holographic particle tracking velocimetry. Meas Sci Technol 17:1647–1651CrossRefGoogle Scholar
  115. Sato Y, Irisawa G et al (2004) Visualization of convective mixing in microchannel by fluorescence imaging. Meas Sci Technol 14:114–121CrossRefGoogle Scholar
  116. Sheng J, Malkiel E et al (2006) Digital holographic microscope for measuring three-dimensional particle distributions and motions. Appl Opt 45(16):3893–3901CrossRefGoogle Scholar
  117. Shinohara K, Sugii Y et al (2004) High-speed micro-PIV measurements of transient flow in microfluidic devices. Meas Sci Technol 15:1965–1970CrossRefGoogle Scholar
  118. Shinohara K, Sugii Y et al (2005) Development of a three-dimensional scanning microparticle image velocimetry system using a piezo actuator. Rev Sci Instrum 76:106109CrossRefGoogle Scholar
  119. Sinton D (2004) Microscale flow visualization. Microfluid Nanofluid 1(1):2–21CrossRefGoogle Scholar
  120. Song H, Chen DL et al (2006) Reactions in droplets in microflulidic channels. Angew Chem Int Ed 45(44):7336–7356MathSciNetCrossRefGoogle Scholar
  121. Speidel M, Jonas A et al (2003) Three-dimensional tracking of fluorescent nanoparticles with subnanometer precision by use of off-focus imaging. Opt Lett 28(2):69–71CrossRefGoogle Scholar
  122. Squires TM, Quake SR (2005) Microfluidics: fluid physics at the nanoliter scale. Rev Mod Phys 77:977–1026CrossRefGoogle Scholar
  123. Sugii Y, Nishio S et al (2002) In vivo PIV measurement of red blood cell velocity field in microvessels considering mesentery motion. Physiol Meas 23(2):403–416CrossRefGoogle Scholar
  124. Sugii Y, Okuda R et al (2005) Velocity measurement of both red blood cells and plasma of in vitro blood flow using high-speed micro PIV technique. Meas Sci Technol 16(5):1126–1130CrossRefGoogle Scholar
  125. Tanaami T, Otsuki S et al (2002) High-speed 1-frame/ms scanning confocal microscope with a microlens and Nipkow disks. Appl Opt 41(22):4704–4708CrossRefGoogle Scholar
  126. Tangelder GJ, Slaaf DW et al (1986) Velocity profiles of blood-platelets and red-blood-cells flowing in arterioles of the rabbit mesentery. Circ Res 59(5):505–514Google Scholar
  127. Tien W, Kartes P et al (2008) A color-coded backlighted defocusing digital particle image velocimetry system. Exp Fluids 44:1015–1026CrossRefGoogle Scholar
  128. Tretheway DC, Meinhart CD (2002) Apparent fluid slip at hydrophobic microchannel walls. Phys Fluids 14(3):L9–L12CrossRefGoogle Scholar
  129. Tretheway DC, Meinhart CD (2004) A generating mechanism for apparent fluid slip in hydrophobic microchannels. Phys Fluids 16(5):1509–1515CrossRefGoogle Scholar
  130. Vennemann P, Kiger K et al (2005) In vivo micro PIV in the embryonic avian heart. 6th international symposium on particle image velocimetry. Pasadena, CA, USAGoogle Scholar
  131. Vennemann P, Kiger KT et al (2006) In vivo micro particle image velocimetry measurements of blood-plasma in the embryonic avian heart. J Biomech 39(7):1191–1200CrossRefGoogle Scholar
  132. Vennemann P, Lindken R et al (2007) In vivo whole-field blood velocity measurement techniques. Exp Fluids 42:495–511CrossRefGoogle Scholar
  133. Wang DZ, Sigurdson M et al (2005) Experimental analysis of particle and fluid motion in ac electrokinetics. Exp Fluids 38(1):1–10CrossRefGoogle Scholar
  134. Wang C, Nguyen NT et al (2007) Optical measurement of flow field and concentration field inside a moving nanoliter droplet. Sens Actuators A 133:317–322CrossRefGoogle Scholar
  135. Wereley ST, Gui L (2003) A correlation-based central difference image correction (CDIC) method and application in a four-roll mill flow PIV measurement. Exp Fluids 34:42–51Google Scholar
  136. Wereley ST, Meinhart CD (2001) Adaptive second-order accurate particle image velocimetry. Exp Fluids 31(3):258–268CrossRefGoogle Scholar
  137. Wereley ST, Gui L et al (2002) Advanced algorithms for microscale particle image velocimetry. AIAA J 40(6):1047–1055CrossRefGoogle Scholar
  138. Wereley ST, Meinhart C et al (2005) Single pixel evaluation of microchannel flows. Proceedings of IMECE2005, 2007 ASME international mechanical engineering congress and exposition. Orlando, FL, USA, ASMEGoogle Scholar
  139. Westerweel J (1994) Efficient detection of spurious vectors in particle image velocimetry data. Exp Fluids 16:236–247CrossRefGoogle Scholar
  140. Westerweel J, Geelhoed PF et al (2004) Single-pixel resolution ensemble correlation for micro-PIV applications. Exp Fluids 37(3):375–384CrossRefGoogle Scholar
  141. Willert CE, Gharib M (1991) Digital particle image velocimetry. Exp Fluids 10:181–193CrossRefGoogle Scholar
  142. Willert CE, Gharib M (1992) 3-Dimensional particle imaging with a single camera. Exp Fluids 12(6):353–358CrossRefGoogle Scholar
  143. Wu MM, Roberts JW et al (2005) Three-dimensional fluorescent particle tracking at micron-scale using a single camera. Exp Fluids 38(4):461–465CrossRefGoogle Scholar
  144. Xia Y, Whitesides GM (1998) Soft lithography. Annu Rev Mat Sci 28:153–184CrossRefGoogle Scholar
  145. Yoon SY, Kim KC (2006) 3D particle position and 3D velocity field measurement in a microvolume via the defocusing concept. Meas Sci Technol 17(11):2897–2905CrossRefGoogle Scholar
  146. Zettner CM, Yoda M (2003) Particle velocity field measurements in a near-wall flow using evanescent wave illumination. Exp Fluids 34(1):115–121Google Scholar
  147. Zhu LD, Tretheway D et al (2005) Simulation of fluid slip at 3D hydrophobic microchannel walls by the lattice Boltzmann method. J Comput Phys 202(1):181–195zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Stuart J. Williams
    • 1
  • Choongbae Park
    • 2
  • Steven T. Wereley
    • 2
  1. 1.Department of Mechanical EngineeringUniversity of LouisvilleLouisvilleUSA
  2. 2.Birck Nanotechnology Center, Mechanical EngineeringPurdue UniversityWest LafayetteUSA

Personalised recommendations