Advertisement

Microfluidics and Nanofluidics

, Volume 9, Issue 4–5, pp 671–680 | Cite as

A Venturi microregulator array module for distributed pressure control

  • Dustin S. Chang
  • Sean M. Langelier
  • Ramsey I. Zeitoun
  • Mark A. BurnsEmail author
Research Paper

Abstract

Pressure-driven flow control systems are a critical component in many microfluidic devices. Compartmentalization of this functionality into a stand-alone module possessing a simple interface would allow reduction of the number of pneumatic interconnects required for fluidic control. Ideally, such a module would also be sufficiently compact for implementation in portable platforms. In our current work, we show the feasibility of using a modular array of Venturi pressure microregulators for coordinated droplet manipulation. The arrayed microregulators share a single pressure input and are capable of outputting electronically controlled pressures that can be independently set between ±1.3 kPa. Because the Venturi microregulator operates by thermal perturbation of a choked gas flow, this output range corresponds to a temperature variation between 20 and 95°C. Using the array, we demonstrate loading, splitting, merging, and independent movement of multiple droplets in a valveless microchannel network.

Keywords

Pressure regulator Micronozzle Valveless microchannel network 

Notes

Acknowledgments

We thank Brian Johnson for indispensable help in LabVIEW operation and cleanroom maintenance. The authors would like to gratefully acknowledge the support of this work through several grants from the National Institutes of Health (5-R01-AI049541-06 and 1-R01-EB006789-01A2). The authors would like to thank the staff and members of the Lurie Nanofabrication Facility at the University of Michigan for their assistance in device fabrication.

Supplementary material

Online Resource 1

Loading, merging, and splitting of DI water droplets using the experimental setup shown in Fig. 8. Supplementary material (MPEG 6198 kb)

Online Resource 2

Multiple droplet control using the experimental setup shown in Fig. 8. One droplet of DI water is split into two volumes, one of which is moved while the other is held stationary. Supplementary material (MPEG 6322 kb)

References

  1. Amirouche F, Zhou Y, Johnson T (2009) Current micropump technologies and their biomedical applications. Microsyst Technol 15:647–666. doi: 10.1007/s00542-009-0804-7 CrossRefGoogle Scholar
  2. Cesaro-Tadic S, Dernick G, Juncker D, Buurman G, Kropshofer H, Michel B, Fattinger C, Delamarche E (2004) High-sensitivity miniaturized immunoassays for tumor necrosis factor α using microfluidic systems. Lab Chip 4:563–569. doi: 10.1039/b408964b CrossRefGoogle Scholar
  3. Chang DS, Langelier SM, Burns MA (2007) An electronic Venturi-based pressure microregulator. Lab Chip 7:1791–1799. doi: 10.1039/b708574e CrossRefGoogle Scholar
  4. Cho YK, Lee JG, Park JM, Lee BS, Lee Y, Ko C (2007) One-step pathogen specific DNA extraction from whole blood on a centrifugal microfluidic device. Lab Chip 7:565–573. doi: 10.1039/b616115d CrossRefGoogle Scholar
  5. Chung KH, Hong JW, Lee DS, Yoon HC (2007) Microfluidic chip accomplishing self-fluid replacement using only capillary force and its bioanalytical application. Anal Chim Acta 585:1–10. doi: 10.1016/j.aca.2006.12.012 CrossRefGoogle Scholar
  6. Cole MC, Kenis PJA (2009) Multiplexed electrical sensor arrays in microfluidic networks. Sens Actuators B 136:350–358. doi: 10.1016/j.snb.2008.12.010 CrossRefGoogle Scholar
  7. Gustafsson M, Hirschberg D, Palmberg C, Jörnvall H, Bergman T (2004) Integrated sample preparation and MALDI mass spectrometry on a microfluidic compact disk. Anal Chem 76:345–350. doi: 10.1021/ac030194b CrossRefGoogle Scholar
  8. Khnouf R, Beebe DJ, Fan ZH (2009) Cell-free protein expression in a microchannel array with passive pumping. Lab Chip 9:56–61. doi: 10.1039/b808034h CrossRefGoogle Scholar
  9. Lai S, Wang S, Luo J, Lee LJ, Yang ST, Madou MJ (2004) Design of a compact disk-like microfluidic platform for enzyme-linked immunosorbent assay. Anal Chem 76:1832–1837. doi: 10.1021/ac0348322 CrossRefGoogle Scholar
  10. Lee CH, Jiang K, Davies GJ (2007) Sidewall roughness characterization and comparison between silicon and SU-8 microcomponents. Mater Charact 58:603–609. doi: 10.1016/j.matchar.2006.07.005 CrossRefGoogle Scholar
  11. Melin J, Roxhed N, Gimenez G, Griss P, van der Wijngaart W, Stemme G (2004) A liquid-triggered liquid microvalve for on-chip flow control. Sens Acuators B 100:463–468. doi: 10.1016/j.snb.2004.03.010 CrossRefGoogle Scholar
  12. Oh KW, Ahn CH (2006) A review of microvalves. J Micromech Microeng 16:R13–R39. doi: 10.1088/0960-1317/16/5/R01 CrossRefGoogle Scholar
  13. Srivastava N, Burns MA (2006) Electronic drop sensing in microfluidic devices: automated operation of a nanoliter viscometer. Lab Chip 6:744–751. doi: 10.1039/b516317j CrossRefGoogle Scholar
  14. Steigert J, Grumann M, Brenner T, Riegger L, Harter J, Zengerle R, Ducrée J (2006) Fully integrated whole blood testing by real-time absorption measurement on a centrifugal platform. Lab Chip 6:1040–1044. doi: 10.1039/b607051p CrossRefGoogle Scholar
  15. Unger MA, Chou HP, Thorsen T, Scherer A, Quake SR (2000) Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288:113–116. doi: 10.1126/science.288.5463.113 CrossRefGoogle Scholar
  16. Xu ZR, Zhong CH, Guan YX, Chen XW, Wang JH, Fang ZL (2008) A microfluidic flow injection system for DNA assay with fluids driven by an on-chip integrated pump based on capillary and evaporation effects. Lab Chip 8:1658–1663. doi: 10.1039/b805774e CrossRefGoogle Scholar
  17. Yang M, Pal R, Burns MA (2005) Cost-effective thermal isolation techniques for use on microfabricated DNA amplification and analysis devices. J Micromech Microeng 15:221–230. doi: 10.1088/0960-1317/15/1/031 CrossRefGoogle Scholar
  18. Zhang C, Xing D, Li Y (2007) Micropumps, microvalves, and micromixers within PCR microfluidic chips: advances and trends. Biotech Adv 25:483–514. doi: 10.1016/j.biotechadv.2007.05.003 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Dustin S. Chang
    • 1
  • Sean M. Langelier
    • 1
  • Ramsey I. Zeitoun
    • 1
  • Mark A. Burns
    • 1
    Email author
  1. 1.Department of Chemical EngineeringUniversity of MichiganAnn ArborUSA

Personalised recommendations