Microfluidics and Nanofluidics

, Volume 9, Issue 2–3, pp 411–426

Dielectrophoretic-activated cell sorter based on curved microelectrodes

  • Khashayar Khoshmanesh
  • Chen Zhang
  • Francisco J. Tovar-Lopez
  • Saeid Nahavandi
  • Sara Baratchi
  • Arnan Mitchell
  • Kourosh Kalantar-Zadeh
Research Paper


This article presents the numerical and experimental analysis of a dielectrophoretic-activated cell sorter (DACS), which is equipped with curved microelectrodes. Curved microelectrodes offer unique advantages, since they create strong dielectrophoretic (DEP) forces over the tips and maintain it over a large portion of their structure, as predicted by simulations. The performance of the system is assessed using yeast (Saccharomyces cerevisiae) cells as model organisms. The separation of the live and dead cells is demonstrated at different medium conductivities of 0.001 and 0.14 S/m, and the sorting performance was assessed using a second array of microelectrodes patterned downstream the microchannel. Further, microscopic cell counting analysis reveals that a single pass through the system yields a separating efficiency of ~80% at low medium conductivities and ~85% at high medium conductivities.


Dielectrophoresis Microfluidics Yeast Sorting 


  1. Abidin ZZ, Markx GH (2005) High-gradient electric field system for the dielectrophoretic separation of cells. Journal of Electrostatics 63(6–10):823–830CrossRefGoogle Scholar
  2. Andersson H, van den Berg A (2003) Microfluidic devices for cellomics: a review. Sens Actuat B 92(3):315–325CrossRefGoogle Scholar
  3. Arnold WM (2001) Positioning and levitation media for the separation of biological cells. IEEE Trans Ind Appl 37(5):1468–1475CrossRefGoogle Scholar
  4. Arnold WM, Franich NR (2006) Cell isolation and growth in electric-field defined micro-wells. Curr Appl Phys 6(3):371–374CrossRefGoogle Scholar
  5. Baratchi S, Kanwar RK, Khoshmanesh K, Vasu P, Ashok C, Hittu M, Parratt A, Krishnakumar S, Sun X, Kanwar JR (2009) Drug nano-shuttles to cross the blood brain barrier: promises of nanotechnology for drug delivery to the brain. Curr Nanosci 5(1):15–25CrossRefGoogle Scholar
  6. Bhatt KH, Grego S, Velev OD (2005) An AC electrokinetic technique for collection and concentration of particles and cells on patterned electrodes. Langmuir 21(14):6603–6612CrossRefGoogle Scholar
  7. Castillo J, Dimaki M, Svendsen WE (2009) Manipulation of biological samples using micro and nano techniques. Integr Biol 1(1):30–42CrossRefGoogle Scholar
  8. Cetin B, Li DQ (2008) Effect of Joule heating on electrokinetic transport. Electrophoresis 29(5):994–1005CrossRefGoogle Scholar
  9. Cetin B, Kang Y, Wu Z, Li D (2009) Continuous particle separation by size via AC-dielectrophoresis using a lab-on-a-chip device with 3-D electrodes. Electrophoresis 30(5):1–7CrossRefGoogle Scholar
  10. Crane JS, Pohl HA (1968) A study of living and dead yeast cells using dielectrophoresis. J Electrochem Soc 115(6):584–586CrossRefGoogle Scholar
  11. Dalton C, Goater AD, Burt JPH, Smith HV (2004) Analysis of parasites by electrorotation. J Appl Microbiol 96(1):24–32CrossRefGoogle Scholar
  12. Doh I, Cho YH (2005) A continuous cell separation chip using hydrodynamic dielectrophoresis (DEP) process. Sens Actuat A 121(1):59–65CrossRefGoogle Scholar
  13. El-Ali J, Sorger PK, Jensen KF (2006) Cells on chips. Nature 442(7101):403–411CrossRefGoogle Scholar
  14. Fatoyinbo HO, Kamchis D, Whattingham R, Ogin SL, Hughes MP (2005) A high-throughput 3-D composite dielectrophoretic separator. IEEE Trans Biomed Eng 52(7):1347–1349CrossRefGoogle Scholar
  15. Fu LM, Lee GB, Lin YH, Yang RJ (2004) Manipulation of microparticles using new modes of traveling-wave-dielectrophoretic forces: numerical simulation and experiments. IEEE–ASME Trans Mechatron 9(2):377–383CrossRefGoogle Scholar
  16. Gambari R, Borgatti M, Altomare L, Manaresi N, Medoro G, Romani A, Tartagni M, Guerrieri R (2003) Applications to cancer research of “lab-on-a-chip” devices based on dielectrophoresis (DEP). Technol Cancer Res Treat 2(1):31–40Google Scholar
  17. Gascoyne PRC, Vykoukal JV (2004) Dielectrophoresis-based sample handling in general-purpose programmable diagnostic instruments. Proc IEEE 92(1):22–42CrossRefGoogle Scholar
  18. Gascoyne P, Satayavivad J, Ruchirawat M (2004) Microfluidic approaches to malaria detection. Acta Trop 89(3):357–369CrossRefGoogle Scholar
  19. Gascoyne PRC, Noshari J, Anderson TJ, Becker FF (2009) Isolation of rare cells from cell mixtures by dielectrophoresis. Electrophoresis 30(8):1388–1398CrossRefGoogle Scholar
  20. Gray DS, Tan JL, Voldman J, Chen CS (2004) Dielectrophoretic registration of living cells to a microelectrode array. Biosens Bioelectron 19(7):771–780CrossRefGoogle Scholar
  21. Grom F, Kentsch J, Muller T, Schnelle T, Stelzle M (2006) Accumulation and trapping of hepatitis A virus particles by electrohydrodynamic flow and dielectrophoresis. Electrophoresis 27(7):1386–1393CrossRefGoogle Scholar
  22. Hashimoto M, Kaji H, Nishizawa M (2009) Selective capture of a specific cell type from mixed leucocytes in an electrode-integrated microfluidic device. Biosens Bioelectron 24(9):2892–2897CrossRefGoogle Scholar
  23. Hoeb M, Radler JO, Klein S, Stutzmann M, Brandt MS (2007) Light-induced dielectrophoretic manipulation of DNA. Biophys J 93(3):1032–1038CrossRefGoogle Scholar
  24. Hoettges KF, Dale JW, Hughes MP (2007) Rapid determination of antibiotic resistance in E. coli using dielectrophoresis. Phys Med Biol 52(19):6001–6009CrossRefGoogle Scholar
  25. Holzel R (1997) Electrorotation of single yeast cells at frequencies between 100 Hz and 1.6 GHz. Biophys J 73(2):1103–1109CrossRefGoogle Scholar
  26. Hu XY, Bessette PH, Qian JR, Meinhart CD, Daugherty PS, Soh HT (2005) Marker-specific sorting of rare cells using dielectrophoresis. Proc Natl Acad Sci USA 102(44):15757–15761CrossRefGoogle Scholar
  27. Huang Y, Holzel R, Pethig R, Wang XB (1992) Differences in the AC electrodynamics of viable and nonviable yeast-cells determined through combined dielectrophoresis and electrorotation studies. Phys Med Biol 37(7):1499–1517CrossRefGoogle Scholar
  28. Hunt TP, Lee H, Westervelt RM (2004) Addressable micropost array for the dielectrophoretic manipulation of particles in fluid. Appl Phys Lett 85(26):6421–6423CrossRefGoogle Scholar
  29. Hunt TP, Issadore D, Westervelt RM (2008) Integrated circuit/microfluidic chip to programmably trap and move cells and droplets with dielectrophoresis. Lab Chip 8(1):81–87CrossRefGoogle Scholar
  30. Iliescu C, Tresset G, Xu G (2009) Dielectrophoretic field-flow method for separating particle populations in a chip with asymmetric electrodes. Biomicrofluidics 3:044104CrossRefGoogle Scholar
  31. Jones TB (2003) Electromechanics of particles. Cambridge University Press, CambridgeGoogle Scholar
  32. Kadaksham J, Singh P, Aubry N (2005) Dielectrophoresis induced clustering regimes of viable yeast cells. Electrophoresis 26(19):3738–3744CrossRefGoogle Scholar
  33. Kalantar-zadeh K, Fry B (2007) Nanotechnology enabled sensors. Springer, New YorkGoogle Scholar
  34. Kang YB, Cetin B, Wu Z, Li D (2009) Continuous particle separation with localized AC-dielectrophoresis using embedded electrodes and an insulating hurdle. Electrochim Acta 54(6):1715–1720CrossRefGoogle Scholar
  35. Khoshmanesh K, Kouzani AZ, Nahavandi S, Baratchi S, Kanwar JR (2008) At a glance: cellular biology for engineers. Comput Biol Chem 32(5):315–331MATHCrossRefGoogle Scholar
  36. Khoshmanesh K, Zhang C, Tovar-Lopez FJ, Nahavandi S, Baratchi S, Kalantar-zadeh K, Mitchell A (2009) Dielectrophoretic manipulation and separation of microparticles using curved microelectrodes. Electrophoresis 30(21):3707–3717CrossRefGoogle Scholar
  37. Kononenko VL, Shimkus JK (2000) Stationary deformations of erythrocytes by high-frequency electric field. Bioelectrochemistry 52(2):187–196CrossRefGoogle Scholar
  38. Krassowska W, Neu JC (1994) Response of a single cell to an external electric field. Biophys J 66(6):1768–1776CrossRefGoogle Scholar
  39. Kua CH, Lam YC, Rodriguez I, Yang C, Youcef-Toumi K (2007) Dynamic cell fractionation and transportation using moving dielectrophoresis. Anal Chem 79(18):6975–6987CrossRefGoogle Scholar
  40. Kuzyk A, Yurke B, Toppari JJ, Linko V, Torma P (2008) Dielectrophoretic trapping of DNA origami. Small 4(4):447–450CrossRefGoogle Scholar
  41. Lee K, Kwon SG, Kim SH, Kwak YK (2007) Dielectrophoretic tweezers using sharp probe electrode. Sens Actuat A 136(1):154–160CrossRefGoogle Scholar
  42. Li H, Bashir R (2002) Dielectrophoretic separation and manipulation of live and heat-treated cells of Listeria on microfabricated devices with interdigitated electrodes. Sens Actuat B 86(2–3):215–221CrossRefGoogle Scholar
  43. Li YL, Dalton C, Crabtree HJ, Nilsson G, Kaler K (2007) Continuous dielectrophoretic cell separation microfluidic device. Lab Chip 7(2):239–248CrossRefGoogle Scholar
  44. Markx GH, Talary MS, Pethig R (1994) Separation of viable and nonviable yeast using dielectrophoresis. J Biotechnol 32(1):29–37CrossRefGoogle Scholar
  45. Moon HS, Nam YW, Park JC, Jung HI (2009) Dielectrophoretic separation of airborne microbes and dust particles using a microfluidic channel for real-time bioaerosol monitoring. Environ Sci Technol 43(15):5857–5863CrossRefGoogle Scholar
  46. Morales FHF, Duarte JE, Martí JS (2008) Non-uniform electric field-induced yeast cell electrokinetic behaviour. Revista Ingenieria E Investigacion 28(3):116–121Google Scholar
  47. Morgan H, Green N (2003) AC electrokinetics: colloids and nanoparticles. Research Studies Press, BaldockGoogle Scholar
  48. Morgan H, Hughes MP, Green NG (1999) Separation of submicron bioparticles by dielectrophoresis. Biophys J 77(1):516–525CrossRefGoogle Scholar
  49. Morgan H, Sun T, Holmes D, Gawad S, Green NG (2007) Single cell dielectric spectroscopy. J Phys D 40(1):61–70CrossRefGoogle Scholar
  50. Neek-Amal M, Lajevardipour A, Sepangi HR (2009) Electric field effects on nano-scale bio-membrane of spherical cells. Physica A 388(2–3):120–128Google Scholar
  51. Pethig R, Talary MS (2007) Dielectrophoretic detection of membrane morphology changes in Jurkat T-cells undergoing etoposide-induced apoptosis. IET Nanobiotechnol 1(1):2–9CrossRefGoogle Scholar
  52. Pommer MS, Zhang YT, Keerthi N, Chen D, Thomson JA, Meinhart CD, Soh HT (2008) Dielectrophoretic separation of platelets from diluted whole blood in microfluidic channels. Electrophoresis 29(6):1213–1218CrossRefGoogle Scholar
  53. Radu M, Ionescu M, Irimescu N, Iliescu K, Pologea-Moraru R, Kovacs E (2005) Orientation behavior of retinal photoreceptors in alternating electric fields. Biophys J 89(5):3548–3554CrossRefGoogle Scholar
  54. Roda B, Zattoni A, Reschiglian P, MM H, Mirasoli M, Michelini E, Roda A (2009) Field-flow fractionation in bioanalysis: a review of recent trends. Anal Chim Acta 635(2):132–143CrossRefGoogle Scholar
  55. Sanchis A, Brown AP, Sancho M, Martinez G, Sebastian JL, Munoz S, Miranda JM (2007) Dielectric characterization of bacterial cells using dielectrophoresis. Bioelectromagnetics 28(5):393–401CrossRefGoogle Scholar
  56. Stephens M, Talary MS, Pethig R, Burnett AK, Mills KI (1996) The dielectrophoresis enrichment of CD34(+) cells from peripheral blood stem cell harvests. Bone Marrow Transplant 18(4):777–782Google Scholar
  57. Uppalapati M, Huang YM, Jackson TN, Hancock WO (2008) Microtubule alignment and manipulation using AC electrokinetics. Small 4(9):1371–1381CrossRefGoogle Scholar
  58. Urdaneta M, Smela E (2007) Multiple frequency dielectrophoresis. Electrophoresis 28(18):3145–3155CrossRefGoogle Scholar
  59. Voldman J (2006) Electrical forces for microscale cell manipulation. Annu Rev Biomed Eng 8:425–454CrossRefGoogle Scholar
  60. Wang XJ, Yang J, Gascoyne PRC (1999) Role of peroxide in AC electrical field exposure effects on Friend murine erythroleukemia cells during dielectrophoretic manipulations. Biochim Biophys Acta 1426(1):53–68Google Scholar
  61. Wang ZY, Hansen O, Petersen PK, Rogeberg A, Kutter JP, Bang DD, Wolff A (2006) Dielectrophoresis microsystem with integrated flow cytometers for on-line monitoring of sorting efficiency. Electrophoresis 27(24):5081–5092CrossRefGoogle Scholar
  62. Zhang C, Khoshmanesh K, Tovar-Lopez FJ, Mitchell A, Kalantar-zadeh K (2009) Dielectrophoretic separation of carbon nanotubes and polystyrene microparticles. Microfluid Nanofluid 7(5):633–645CrossRefGoogle Scholar
  63. Zhang C, Khoshmanesh K, Mitchell A, Kalantar-zadeh K (2010) Dielectrophoresis for the manipulation of micro/nano particles in microfluidic systems. Anal Bioanal Chem 396(1):401–420CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Khashayar Khoshmanesh
    • 1
  • Chen Zhang
    • 2
  • Francisco J. Tovar-Lopez
    • 2
  • Saeid Nahavandi
    • 1
  • Sara Baratchi
    • 3
  • Arnan Mitchell
    • 2
  • Kourosh Kalantar-Zadeh
    • 2
  1. 1.Centre for Intelligent Systems ResearchDeakin UniversityGeelongAustralia
  2. 2.School of Electrical and Computer EngineeringRMIT UniversityMelbourneAustralia
  3. 3.Institute of Biotechnology (BioDeakin)Deakin UniversityGeelongAustralia

Personalised recommendations