Microfluidics and Nanofluidics

, Volume 9, Issue 2–3, pp 365–373

Selectively modified microfluidic chip for solvent extraction of Radix Salvia Miltiorrhiza using three-phase laminar flow to provide double liquid–liquid interface area

Research Paper

Abstract

Radix Salvia Miltiorrhiza, a famous herb medicine is widely used in China and limitedly used in USA, Japan, and other countries for the treatment of cardiovascular and cerebrovascular diseases. This herb medicine has two groups (non-polar and polar) of active ingredients with distinct clinical effects, and thus theses ingredients should be separately used to enhance therapeutic efficacy and reduce side effect. In this article, as an alternative of conventional mechanical shaking and separatory funnel, laminar flow extraction in microfluidic chip is proposed to separate the two kinds of herb ingredients. Compared with conventional methods, microfluidic chip provides continuous extraction, less labor intensity, and better performance. Furthermore, we employ three-phase laminar flow to provide double liquid–liquid interface area, circumventing the low efficiency of two-phase laminar flow. Therefore, the extraction ratio is dramatically improved to 92% (tanshinone IIA). To predict the extraction ratio, a straightforward theoretical model is also established and agrees well with the experimental results. This microfluidic chip would be a powerful technical platform for handling complicated natural products.

Keywords

Laminar flow Microfluidics Hydrophobic modification Solvent extraction Radix Salvia Miltiorrhiza 

References

  1. Aota A, Nonaka M, Hibara A, Kitamori T (2007) Countercurrent laminar microflow for highly efficient solvent extraction. Angew Chem Int Ed 46(6):878–880CrossRefGoogle Scholar
  2. Aota A, Mawatari K, Takahashi S, Matsumoto T, Kanda K, Anraku R, Hibara A, Tokeshi M, Kitamori T (2009) Phase separation of gas-liquid and liquid-liquid microflows in microchips. Microchim Acta 164(3–4):249–255CrossRefGoogle Scholar
  3. Bruus H (2008) Theoretical microfluidics. Oxford University Press, OxfordGoogle Scholar
  4. Chen H, Fang Q, Yin XF, Fang ZL (2005) Microfluidic chip-based liquid-liquid extraction and preconcentration using a subnanoliter-droplet trapping technique. Lab Chip 5(7):719–725CrossRefGoogle Scholar
  5. Cheng TO (2007) Cardiovascular effects of Danshen. Int J Cardiol 121(1):9–22CrossRefGoogle Scholar
  6. Cui L, Wu T, Liu YY, Deng YF, Ai CM, Chen HQ (2004) Tanshinone prevents cancellous bone loss induced by ovariectomy in rats. Acta Pharmacol Sin 25(5):678–684Google Scholar
  7. Favre E (1996) Swelling of crosslinked polydimethylsiloxane networks by pure solvents: influence of temperature. Eur Polym J 32(10):1183–1188CrossRefGoogle Scholar
  8. Hibara A, Nonaka M, Hisamoto H, Uchiyama K, Kikutani Y, Tokeshi M, Kitamori T (2002) Stabilization of liquid interface and control of two-phase confluence and separation in glass microchips by utilizing octadecylsilane modification of microchannels. Anal Chem 74(7):1724–1728CrossRefGoogle Scholar
  9. Hisamoto H, Horiuchi T, Uchiyama K, Tokeshi M, Hibara A, Kitamori T (2001) On-chip integration of sequential ion-sensing system based on intermittent reagent pumping and formation of two-layer flow. Anal Chem 73(22):5551–5556CrossRefGoogle Scholar
  10. Hu P, Liang QL, Luo GA, Zhao ZZ, Jiang ZH (2005a) Multi-component HPLC fingerprinting of Radix Salviae Miltiorrhizae and its LC-MS-MS identification. Chem Pharm Bull 53(6):677–683CrossRefGoogle Scholar
  11. Hu P, Luo GA, Zhao ZZ, Jiang ZH (2005b) Quantitative determination of four diterpenoids in Radix Salviae Miltiorrhizae using LC-MS-MS. Chem Pharm Bull 53(6):705–709CrossRefGoogle Scholar
  12. Hu P, Luo GA, Zhao ZZ, Jiang ZH (2005c) Quality assessment of Radix Salviae Miltiorrhizae. Chem Pharm Bull 53(5):481–486CrossRefGoogle Scholar
  13. Kenis PJA, Ismagilov RF, Whitesides GM (1999) Microfabrication inside capillaries using multiphase laminar flow patterning. Science 285(5424):83–85CrossRefGoogle Scholar
  14. Lay IS, Chiu JH, Shiao MS, Lu WY, Wu CW (2003) Crude extract of Salvia miltiorrhiza and salvianolic acid B enhance in vitro angiogenesis in murine SVR endothelial cell line. Planta Med 69(1):26–32CrossRefGoogle Scholar
  15. Lee JN, Park C, Whitesides GM (2003) Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices. Anal Chem 75(23):6544–6554CrossRefGoogle Scholar
  16. Li LN (1997) Water soluble active components of Salvia miltiorrhiza and related plants. J Chin Pharm Sci 6:57–64Google Scholar
  17. Li LD, Zhang RL, Liu CY, Ning KY, Li YK, Feng XQ, He J (2003) Establishment of Chinese Miniswine Model of myocardial infarct by catheterization in coronary artery. Chin J New Drugs 12:999–1004Google Scholar
  18. Lo TC, Baird MHI, Carl H (1983) Handbook of solvent extraction. Wiley, New YorkGoogle Scholar
  19. Maruyama T, Uchida J, Ohkawa T, Futami T, Katayama K, Nishizawa K, Sotowa K, Kubota F, Kamiyaa N, Goto M (2003) Enzymatic degradation of p-chlorophenol in a two-phase flow microchannel system. Lab Chip 3(4):308–312CrossRefGoogle Scholar
  20. Maruyama T, Matsushita H, Uchida J, Kubota F, Kamiya N, Goto M (2004) Liquid membrane operations in a microfluidic device for selective separation of metal ions. Anal Chem 76(15):4495–4500CrossRefGoogle Scholar
  21. Mata C, Longmire EK, McKenna DH, Glass KK, Hubel A (2008) Experimental study of diffusion-based extraction from a cell suspension. Microfluid Nanofluid 5(4):529–540CrossRefGoogle Scholar
  22. Miyaguchi H, Tokeshi M, Kikutani Y, Hibara A, Inoue H, Kitamori T (2006) Microchip-based liquid-liquid extraction for gas-chromatography analysis of amphetamine-type stimulants in urine. J Chromatogr A 1129(1):105–110CrossRefGoogle Scholar
  23. Mu X, Liang QL, Hu P, Ren KN, Wang YM, Luo GA (2009a) Laminar flow used as “liquid etch mask” in wet chemical etching to generate glass microstructures with an improved aspect ratio. Lab Chip 9(14):1994–1996CrossRefGoogle Scholar
  24. Mu X, Liang QL, Hu P, Yao B, Ren KN, Wang YM, Luo GA (2009b) Prototypical nonelectrochemical method for surface regeneration of an integrated electrode in a PDMS microfluidic chip. Anal Lett 42(13):1986–1996CrossRefGoogle Scholar
  25. Rani SA, Pitts B, Stewart PS (2005) Rapid diffusion of fluorescent tracers into Staphylococcus epidermidis biofilms visualized by time lapse microscopy. Antimicrob Agents Chemother 49(2):728–732CrossRefGoogle Scholar
  26. Ren KN, Liang QL, Mu X, Luo GA, Wang YM (2009) Miniaturized high throughput detection system for capillary array electrophoresis on chip with integrated light emitting diode array as addressed ring-shaped light source. Lab Chip 9(5):733–736CrossRefGoogle Scholar
  27. Shen H, Fang Q (2008) Improved microfluidic chip-based sequential-injection trapped-droplet array liquid-liquid extraction system for determination of aluminium. Talanta 77(1):269–272CrossRefMathSciNetGoogle Scholar
  28. Shen H, Fang Q, Fang ZL (2006) A microfluidic chip based sequential injection system with trapped droplet liquid-liquid extraction and chemiluminescence detection. Lab Chip 6(10):1387–1389CrossRefGoogle Scholar
  29. Shui L, Eijkel JCT, van den Berg A (2007) Multiphase flow in microfluidic systems—control and applications of droplets and interfaces. Adv Colloid Interface Sci 133(1):35–49CrossRefGoogle Scholar
  30. Sia SK, Whitesides GM (2003) Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies. Electrophoresis 24(21):3563–3576CrossRefGoogle Scholar
  31. Surmeian M, Slyadnev MN, Hisamoto H, Hibara A, Uchiyama K, Kitamori T (2002) Three-layer flow membrane system on a microchip for investigation of molecular transport. Anal Chem 74(9):2014–2020CrossRefGoogle Scholar
  32. Swickrath MJ, Shenoy S, Mann JA, Belcher J, Kovar R, Wnek GE (2008) The design and fabrication of autonomous polymer-based surface tension-confined microfluidic platforms. Microfluid Nanofluid 4(6):601–611CrossRefGoogle Scholar
  33. Tetala KKR, Swarts JW, Chen B, Janssen AEM, van Beek TA (2009) A three-phase microfluidic chip for rapid sample clean-up of alkaloids from plant extracts. Lab Chip 9(14):2085–2092CrossRefGoogle Scholar
  34. Tokeshi M, Minagawa T, Kitamori T (2000) Integration of a microextraction system on a glass chip: ion-pair solvent extraction of Fe(II) with 4,7-diphenyl-1,10-phenanthrolinedisulfonic acid and tri-n-octylmethylammonium chloride. Anal Chem 72(7):1711–1714CrossRefGoogle Scholar
  35. Wong I, Ho CM (2009) Surface molecular property modifications for poly(dimethylsiloxane) (PDMS) based microfluidic devices. Microfluid Nanofluid 7(3):291–306CrossRefGoogle Scholar
  36. Woolford B, Maynes D, Webb BW (2009) Liquid flow through microchannels with grooved walls under wetting and superhydrophobic conditions. Microfluid Nanofluid 7(1):121–135CrossRefGoogle Scholar
  37. Yao B, Luo GA, Feng X, Wang W, Chen LX, Wang YM (2004) A microfluidic device based on gravity and electric force driving for flow cytometry and fluorescence activated cell sorting. Lab Chip 4(6):603–607CrossRefGoogle Scholar
  38. Yao B, Yang HH, Liang QL, Luo G, Wang LD, Ren KN, Gao YD, Wang YM, Qiu Y (2006) High-speed, whole-column fluorescence imaging detection for isoelectric focusing on a microchip using an organic light emitting diode as light source. Anal Chem 78(16):5845–5850CrossRefGoogle Scholar
  39. Yung CW, Fiering J, Mueller AJ, Ingber DE (2009) Micromagnetic-microfluidic blood cleansing device. Lab Chip 9(9):1171–1177CrossRefGoogle Scholar
  40. Zhou LM, Zuo Z, Chow MSS (2005) Danshen: an overview of its chemistry, pharmacology, pharmacokinetics, and clinical use. J Clin Pharmacol 45(12):1345–1359CrossRefGoogle Scholar
  41. Zhou JH, Yan H, Ren KN, Dai W, Wu HK (2009) Convenient method for modifying poly(dimethylsiloxane) with poly(ethylene glycol) in microfluidics. Anal Chem 81(16):6627–6632CrossRefGoogle Scholar
  42. Znidarsic-Plazl P, Plazl I (2007) Steroid extraction in a microchannel system—mathematical modelling and experiments. Lab Chip 7(7):883–889CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.School of PharmacyEast China University of Science and TechnologyShanghaiPeople’s Republic of China
  2. 2.Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of ChemistryTsinghua UniversityBeijingPeople’s Republic of China
  3. 3.College of Chemical and Molecular EngineeringEast China University of Science and TechnologyShanghaiPeople’s Republic of China

Personalised recommendations