Microfluidics and Nanofluidics

, Volume 9, Issue 2–3, pp 163–170

Fabrication of high-aspect-ratio polymer nanochannels using a novel Si nanoimprint mold and solvent-assisted sealing

  • Y. H. Cho
  • J. Park
  • H. Park
  • X. Cheng
  • B. J. Kim
  • A. Han
Research Paper

Abstract

We present a low cost nanofabrication method to fabricate high-aspect-ratio (HAR) polymer nanochannels using a novel silicon nanoimprint mold fabrication technique and a solvent-assisted sealing method. These nanofluidic channels are being developed for single biomolecule detection. The silicon nanoimprint mold fabrication process is based on the combination of anisotropic etching of silicon by potassium hydroxide (KOH) solution and the local oxidation of silicon (LOCOS) process. The resulting high-aspect-ratio silicon mold has smooth sidewalls owing to the anisotropic KOH etching process along the silicon crystalline geometry as well as the LOCOS process. The nanostructures in the nanoimprint molds that form the nanochannels can be easily controlled by the initial micropattern sizes defined using conventional UV lithography and the oxidation time, making this technique a practical solution for low cost and high-throughput HAR silicon nanoimprint mold fabrication. Nanoimprint molds having aspect ratios of more than 1:5.5 (width: 200 nm, height: 1.1 μm, length: 1 cm) were successfully fabricated. Nanoimprinting technique was used to create poly(methyl methacrylate) (PMMA) nanotrenches out of this nanoimprint mold. A novel solvent-assisted sealing technique was developed in order to seal the HAR PMMA nanotrenches. This technique enables the generation of nanochannels with various nanoscale dimensions without the need for complicated and expensive nanolithography tools.

Keywords

Nanochannel fabrication Nanoimprint lithography High-aspect-ratio nanostructure 

References

  1. Abgrall P, Nguyen NT (2008) Nanofluidic devices and their applications. Anal Chem 80:2326–2341CrossRefGoogle Scholar
  2. Bai JG, Chang CL, Chung JH, Lee KH (2007) Shadow edge lithography for nanoscale patterning and manufacturing. Nanotechnology 18:405307CrossRefGoogle Scholar
  3. Bai JG, Yeo WH, Chung JH (2009) Nanostructured biosensing platform-shadow edge lithography for high-throughput nanofabrication. Lab Chip 9:449–455CrossRefGoogle Scholar
  4. Cao H, Yu ZN, Wang J, Tegenfeldt JO, Austin RH, Chen E, Wu W, Chou SY (2002) Fabrication of 10 nm enclosed nanofluidic channels. Appl Phys Lett 81:174–176CrossRefGoogle Scholar
  5. Chen LQ, Chan-Park MB, Yan YH, Zhang Q, Li CM, Zhang J (2007) High aspect ratio silicon nanomoulds for UV embossing fabricated by directional thermal oxidation using an oxidation mask. Nanotechnology 18:355307CrossRefGoogle Scholar
  6. Cho YH, Lee SW, Kim BJ, Fujii T (2007) Fabrication of silicon dioxide submicron channels without nanolithography for single biomolecule detection. Nanotechnology 18:465303CrossRefGoogle Scholar
  7. Chou SY, Krauss PR, Renstrom PJ (1996) Imprint lithography with 25-nanometer resolution. Science 272:85–87CrossRefGoogle Scholar
  8. Craighead HG (2006) Future lab-on-a-chip technologies for interrogating individual molecules. Nature 442:387–393CrossRefGoogle Scholar
  9. Dumond JJ, Low HY, Rodriguez I (2006) Isolated, sealed nanofluidic channels formed by combinatorial-mould nanoimprint lithography. Nanotechnology 17:1975–1980CrossRefGoogle Scholar
  10. Fu J, Schoch RB, Stevens AL, Tannenbaum SR, Han J (2007) A patterned anisotropic nanofluidic sieving structure for continuous-flow separation of DNA and proteins. Nat Nanotechnol 2:121–128CrossRefGoogle Scholar
  11. Grabiec PB, Zaborowsk M, Domansik K, Gotszalk T, Rangelow IW (2004) Nano-width lines using lateral pattern definition technique for nanoimprint template fabrication. Microelectron Eng 73–74:599–603CrossRefGoogle Scholar
  12. Guo LJ, Cheng X, Chou CF (2004) Fabrication of size-controllable nanofluidic channels by nanoimprinting and its application for DNA stretching. Nano Lett 4:69–73CrossRefGoogle Scholar
  13. Han J, Craighead HG (2000) Separation of long DNA molecules in a microfabricated entropic trap array. Science 288:1026–1029CrossRefGoogle Scholar
  14. Haneveld J, Berenschot E, Maury P, Jansen H (2006) Nano-ridge fabrication by local oxidation of silicon edges with silicon nitride as a mask. J Micromech Microeng 16:S24–S28CrossRefGoogle Scholar
  15. Huh D, Mills KL, Zhu X, Burns MA, Thouless MD, Takayama S (2007) Tuneable elastomeric nanochannels for nanofluidic manipulation. Nat Mater 6:424–428CrossRefGoogle Scholar
  16. Jo K, Dhingra DM, Odijk T, de Pablo JJ, Graham MD, Runnheim R, Forrest D, Schwartz DC (2007) A single-molecule barcoding system using nanoslits for DNA analysis. Proc Natl Acad Sci USA 104:2673–2678CrossRefGoogle Scholar
  17. Langford RM, Nellen PM, Gierak J, Fu YQ (2007) Focused ion beam micro- and nanoengineering. MRS Bull 32:417–423Google Scholar
  18. Liang X, Morton KJ, Austin RH, Chou SY (2007) Single sub-20 nm wide, centimeter-long nanochannel fabricated by novel nanoimprinting mold fabrication and direct imprinting. Nano Lett 7:3774–3780CrossRefGoogle Scholar
  19. Mannion JT, Reccius CH, Cross JD, Craighead HG (2006) Conformational analysis of single DNA molecules undergoing entropically induced motion in nanochannels. Biophys J 90:4538–4545CrossRefGoogle Scholar
  20. McGinniss VD (1985) Vaporous solvent treatment of thermoplastic substrates. United States Patent 4529563Google Scholar
  21. Mikayama T, Suzuki T, Matsui J, Miyashita T (2005) Fabrication of depth-controllable nanochannel with polymer nanoassembled films using atomic force microscopy lithography. Polym J 37:854–857CrossRefGoogle Scholar
  22. Nilsson D, Jensen S, Menon A (2003) Fabrication of silicon molds for polymer optics. J Micromech Microeng 13:S57–S61CrossRefGoogle Scholar
  23. Nishino T, Meguro M, Nakamae K, Matsushita M, Ueda Y (1999) The lowest surface free energy based on -CF3 alignment. Langmuir 15:4321–4323CrossRefGoogle Scholar
  24. Perry JL, Kandlikar SG (2006) Review of fabrication of nanochannels for single phase liquid flow. Microfluid Nanofluid 2:185–193CrossRefGoogle Scholar
  25. Reano RM, Pang SW (2005) Sealed three-dimensional nanochannels. J Vac Sci Technol B 23:2995–2999CrossRefGoogle Scholar
  26. Riehn R, Lu MC, Wang YM, Lim SF, Cox EC, Austin RH (2005) Restriction mapping in nanofluidic devices. Proc Natl Acad Sci USA 102:10012–10016CrossRefGoogle Scholar
  27. Tamaki E, Hibara A, Kim HB, Tokeshi M, Kitamori T (2006) Pressure-driven flow control system for nanofluidic chemical process. J Chromatogr A 1137:256–262CrossRefGoogle Scholar
  28. Tegenfeldt JO, Prinz C, Cao H, Reisner WW, Riehn R, Wang YM, Cox EC, Sturm JC, Silberzan P, Austin RH (2004) The dynamics of genomic-length DNA molecules in 100-nm channels. Proc Natl Acad Sci USA 101:10979–10983CrossRefGoogle Scholar
  29. Vangbo M, Backlund Y (1996) Precise mask alignment to the crystallographic orientation of silicon wafers using wet anisotropic etching. J Micromech Microeng 6:279–284CrossRefGoogle Scholar
  30. Wang KG, Yue S, Wang L, Jin A, Gu C, Wang P, Wang H, Xu X, Wang Y, Niu H (2006) Manipulating DNA molecules in nanofluidic channels. Microfluid Nanofluid 2:85–88CrossRefGoogle Scholar
  31. Zaborowsk M, Szmigiel D, Gotszalk T, Ivanova K, Sarov Y, Volland BE, Rangelow IW, Grabiec P (2006) Nano-line width control and standards using lateral pattern definition technique. Microelectron Eng 83:1555–1558CrossRefGoogle Scholar
  32. Zhao Y, Berenschot E, de Bore M, Jansen H, Tas N, Huskens J, Elwenspoek M (2008) Fabrication of a silicon oxide stamp by edge lithography reinforced with silicon nitride for nanoimprint lithography. J Micromech Microeng 18:064013CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Y. H. Cho
    • 1
  • J. Park
    • 2
  • H. Park
    • 2
  • X. Cheng
    • 2
  • B. J. Kim
    • 3
  • A. Han
    • 2
  1. 1.School of Mechanical Design and Automation EngineeringSeoul National University of TechnologySeoulKorea
  2. 2.Department of Electrical and Computer EngineeringTexas A&M UniversityCollege StationUSA
  3. 3.CIRMM, Institute of Industrial ScienceThe University of TokyoTokyoJapan

Personalised recommendations