Microfluidics and Nanofluidics

, Volume 8, Issue 5, pp 609–617 | Cite as

Manipulation and patterning of carbon nanotubes utilizing optically induced dielectrophoretic forces

Research Paper


This study reports an optically driven platform upon which the manipulation and patterning of carbon nanotubes (CNTs) can be accomplished. A photoconductive layer made of amorphous silicon generates a nonuniform electric field within the developed platform at specific optically illuminated sites, which are usually referred to as “virtual electrodes,” that induces dielectrophoretic forces for manipulating the CNTs. The software-controlled light patterns enable a variety of flexible manipulation modes since it is now possible to dynamically reconfigure the optically projected electrode patterns. This approach allows for real-time manipulation and miscellaneous patterning of CNTs. The sorting and separation of bundled and dispersed CNTs is also demonstrated. This developed platform may be promising for rapid fabrication of CNT-based nanosensors together with nanoelectronics, purification as well as classification of synthesized CNTs and other applications requiring nanoscale manipulation.


Optically induced dielectrophoresis Carbon nanotubes Separation Nano-patterning 

Abbreviations and Nomenclature


Hydrogenated amorphous silicon


Alternating current


Charge-coupled device




Carbon nanotubes






Intensity of the applied electric field


Dielectrophoretic force



\( \overline{K} \)

Clausius–Mossotti factor


Liquid crystal display


Multi-walled carbon nanotubes


Optically induced dielectrophoretic


Optoelectronic tweezers


Optical tweezers


Plasma-enhanced chemical vapor deposition


Radius of the submicron spherical particle


Sodium dodecyl sulfate


Single-walled carbon nanotubes


Length of the nanotubes


Electrical permittivity of the surrounding buffer



The authors would like to thank the National Science Council in Taiwan for their financial support. Valuable discussion regarding the preparation of CNT samples with Dr. Wen J. Li is greatly appreciated.


  1. Arnold MS, Green AA, Hulvat JF, Stupp SI, Hersam MC (2006) Sorting carbon nanotubes by electronic structure using density differentiation. Nat Nanotechnol 1:60–65CrossRefGoogle Scholar
  2. Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes—the route toward applications. Science 297:787–792CrossRefGoogle Scholar
  3. Chan RHM, Fung CKM, Li WJ (2004) Rapid assembly of carbon nanotubes for nanosensing by dielectrophoretic force. Nanotechnology 15:S672–S677CrossRefGoogle Scholar
  4. Chen Y, Shaw DT, Bai XD, Wang EG, Lund C, Lu WM, Chung DDL (2001) Hydrogen storage in aligned carbon nanotubes. Appl Phys Lett 78:2128–2130CrossRefGoogle Scholar
  5. Chiou PY, Ohta AT, Wu MC (2005) Massively parallel manipulation of single cells and microparticles using optical images. Nature 436:370–372CrossRefGoogle Scholar
  6. Choi WB, Jin YW, Kim HY, Lee SJ, Yun MJ, Kang JH, Choi YS, Park NS, Lee NS, Kim JM (2001) Electrophoresis deposition of carbon nanotubes for triode-type field emission display. Appl Phys Lett 78:1547–1549CrossRefGoogle Scholar
  7. Dillon AC, Heben MJ (2001) Hydrogen storage using carbon adsorbents: past, present and future. Appl Phys A 72:133–142CrossRefGoogle Scholar
  8. Fan Z, Ho JC, Jacobson ZA, Yerushalmi R, Alley RL, Razavi H, Javey A (2008a) Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing. Nano Lett 8(1):20–25CrossRefGoogle Scholar
  9. Fan Z, Ho JC, Jacobson ZA, Razavi H, Javey A (2008b) Large-scale, heterogeneous integration of nanowire arrays for image sensor circuitry. Proc Natl Acad Sci USA 105:11066–11070CrossRefGoogle Scholar
  10. Grier DG (2003) A revolution in optical manipulation. Nature 424:810–816CrossRefGoogle Scholar
  11. Grobert N (2007) Carbon nanotubes—becoming clean. Mater Today 10:28–35CrossRefGoogle Scholar
  12. Hersam MC (2008) Progress towards monodisperse single-walled carbon nanotubes. Nat Nanotechnol 3:387–394CrossRefGoogle Scholar
  13. Hwang H, Choi YJ, Choi W, Kim SH, Jang J, Park JK (2008) Interactive manipulation of blood cells using a lens-integrated liquid crystal display based optoelectronic tweezers system. Electrophoresis 29:1203–1212CrossRefGoogle Scholar
  14. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRefGoogle Scholar
  15. Jamshidi A, Pauzauskie PJ, Schuck PJ, Ohta AT, Chiou PY, Chou J, Yang P, Wu MC (2008) Dynamic manipulation and separation of individual semiconducting and metallic nanowires. Nat Photonics 2:86–90CrossRefGoogle Scholar
  16. Jones TB (1995) Electromechanics of particles. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  17. Jorio A, Dresselhaus G, Dresselhaus MS (2008) Carbon nanotubes. Springer, BerlinGoogle Scholar
  18. Krupke R, Hennrich F, von Löhneysen H, Kappes MM (2003) Separation of metallic from semiconducting single-walled carbon nanotubes. Science 301:344–347CrossRefGoogle Scholar
  19. Liu Z, Shen Z, Zhu T, Hou S, Ying L, Shi Z, Gu Z (2000) Organizing single-walled carbon nanotubes on gold using a wet chemical self-assembly technique. Langmuir 16:3569–3573CrossRefGoogle Scholar
  20. Nagahara LA, Amlani I, Lewenstein J, Tsui RK (2002) Directed placement of suspended carbon nanotubes for nanometer-scale assembly. Appl Phys Lett 80:3826–3828CrossRefGoogle Scholar
  21. O’Connell MJ, Eibergen EE, Doorn SK (2005) Chiral selectivity in the charge-transfer bleaching of single-walled carbon-nanotube spectra. Nat Mater 4:412–418CrossRefGoogle Scholar
  22. Pauzauskie PJ, Yang P (2006) Nanowire photonics. Mater Today 10:36–45CrossRefGoogle Scholar
  23. Roschier L, Tarkiainen R, Ahlskog M, Paalanen M, Hakonen P (2002) Manufacture of single electron transistors using AFM manipulation on multiwalled carbon nanotubes. Microelectron Eng 61–62:687–691CrossRefGoogle Scholar
  24. Seo HW, Han CS, Choi DG, Kim KS, Lee YH (2005) Controlled assembly of single SWNTs bundle using dielectrophoresis. Microelectron Eng 81:83–89CrossRefGoogle Scholar
  25. Seo HW, Han CS, Jang WS, Park J (2006) Manipulation of carbon nanotubes and nanowires. Curr Appl Phys 6S1:e216–e219Google Scholar
  26. Suehiro J, Zhou G, Hara M (2003) Fabrication of a carbon nanotube-based gas sensor using dielectrophoresis and its application for ammonia detection by impedance spectroscopy. J Phys D Appl Phys 36:L109–L114CrossRefGoogle Scholar
  27. Tan S, Lopez HA, Cai CW, Zhang Y (2004) Optical trapping of single-walled carbon nanotubes. Nano Lett 8:1415–1419CrossRefGoogle Scholar
  28. Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chemistry of carbon nanotubes. Chem Rev 106:1105–1136CrossRefGoogle Scholar
  29. Trojanowicz M (2006) Analytical applications of carbon nanotubes: a review. Trends Anal Chem 25:480–489CrossRefGoogle Scholar
  30. Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H (2003) One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 15:353–389CrossRefGoogle Scholar
  31. Yamamoto K, Akita S, Nakayama Y (1998) Orientation and purification of carbon nanotubes using ac electrophoresis. J Phys D Appl Phys 31:L34–L36CrossRefGoogle Scholar
  32. Yerushalmi R, Jacobson ZA, Ho JC, Fan Z, Javey A (2007) Large scale, highly ordered assembly of nanowire parallel arrays by differential roll printing. Appl Phys Lett 91:203104CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Department of Engineering ScienceNational Cheng Kung UniversityTainanTaiwan

Personalised recommendations