Microfluidics and Nanofluidics

, Volume 8, Issue 2, pp 217–229

Separation of micro-particles utilizing spatial difference of optically induced dielectrophoretic forces

Research Paper

Abstract

This paper presents new methods to accurately separate micro-particles with different sizes using optically induced dielectrophoretic (ODEP) forces. It is found that the strength of the ODEP force induced on the hydrogenated amorphous silicon surface is determined by the color, line-width and intensity of the optical beams, which provide an innovative design for particle separation. Two linear-segment virtual electrodes which produced the ODEP forces were firstly defined by illuminating lights onto a photoconductive chip. One moving line and one stationary illuminated line were used to generate a stronger and a weaker ODEP force, respectively. The micro-particles were then continuously pushed forward by the stronger ODEP force. As these lines approached each other, larger micro-particles entrained by the higher ODEP forces were squeezed through the stationary electrode and subsequently separated from the smaller particles. With this approach, continuous particle separation can be automatically achieved within a few seconds. This developed method may be promising for a variety of applications such as cell-based assays and sample pretreatment using micro-particles.

Keywords

Optically induced dielectrophoretic Particle separation Microfluidics MEMS 

Abbreviations

AC

Alternating current

CCD

Charge-coupled device

CM

Clausius–Mossotti

DEP

Dielectrophoretic

DI

Deionized

DNA

Deoxyribonucleic acid

FBS

Fetal bovine serum

IPCE

Incident photon-to-current conversion efficiency

ITO

Indium-tin-oxide

LCD

Liquid crystal display

MEMS

Microelectromechanical system

ODEP

Optically induced dielectrophoretic

OET

Optoelectronic tweezers

PECVD

Plasma enhanced chemical vapor deposition

List of symbols

E

Electric field strength

r

Radius of the spherical particle

v

Terminal velocity of the spherical beads

εm

Electrical permittivity of the surrounding buffer

η

Dynamic viscosity of the fluid

References

  1. Berger M, Castelino J, Huang R, Shah M, Austin RH (2001) Design of a microfabricated magnetic cell separator. Electrophoresis 22:3883–3892CrossRefGoogle Scholar
  2. Calmettes PP, Berns MW (1983) Laser induced multiphoton processes in living cells. Proc Natl Acad Sci USA 80:7197–7199CrossRefGoogle Scholar
  3. Carlson DE (1980) Recent developments in amorphous silicon solar cells. Solar Energy Mater 3:503–518CrossRefGoogle Scholar
  4. Carlson DE, Wronski CR (1976) Amorphous silicon solar cell. Appl Phys Lett 28:671–673CrossRefGoogle Scholar
  5. Chapman CF, Liu Y, Sonek GJ, Tromberg BJ (1995) The use of exogenous fluorescent probes for temperature measurements in single living cells. Photochem Photobiol 62:416–425CrossRefGoogle Scholar
  6. Chiou PY, Chang Z, Wu MC (2003) A novel optoelectronic tweezer using light induced dielectrophoresis. In: Proceedings of the international conference on optical MEMS. IEEE/LEOS, WaikoloaGoogle Scholar
  7. Chiou PY, Ohta AT, Wu MC (2005a) Optical sorting mechanism in dynamic electric field induced by optoelectronic tweezers. In: Proceedings of the international conference on bio-nano-informatics fusion. BNI, AnaheimGoogle Scholar
  8. Chiou PY, Ohta AT, Wu MC (2005b) Massively parallel manipulation of single cells and microparticles using optical images. Nature 436:370–372CrossRefGoogle Scholar
  9. Choi S, Park JK (2005) Microfluidic system for dielectrophoretic separation based on a trapezoidal electrode array. Lab Chip 5:1161–1167CrossRefGoogle Scholar
  10. Choi JM, Ahn CH, Bhansali S, Henderson HT (2000) A new magnetic bead-based, filterless bio-separator with planar electromagnet surfaces for integrated bio-detection systems. Sens Actuators B Chem 68:34–39CrossRefGoogle Scholar
  11. Choi S, Song S, Choi C, Park JK (2007) Continuous blood cell separation by hydrophoretic filtration. Lab Chip 7:1532–1538CrossRefGoogle Scholar
  12. Choi W, Nam SW, Hwang H, Park S, Park JK (2008) Programmable manipulation of motile cells in optoelectronic tweezers using a grayscale image. Appl Phys Lett 93:143901–143903CrossRefGoogle Scholar
  13. Connell GAN, Pawlik JR (1976) Use of hydrogenation in structural and electronic studies of gap states in amorphous germanium. Phys Rev B 13:787–804CrossRefGoogle Scholar
  14. Curtis JE, Koss BA, Grier DG (2002) Dynamic holographic optical tweezers. Opt Commun 207:169–175CrossRefGoogle Scholar
  15. De mello AJ, Beard N (2003) Dealing with ‘real’ samples: sample pre-treatment in microfluidic systems. Lab Chip 3:11N–19NCrossRefGoogle Scholar
  16. Doh I, Cho YH (2005) A continuous cell separation chip using hydrodynamic dielectrophoresis (DEP) process. Sens Actuators A Phys 121:59–65CrossRefGoogle Scholar
  17. Fuchs AB et al (2006) Electronic sorting and recovery of single live cells from microlitre sized samples. Lab Chip 6:121–126CrossRefGoogle Scholar
  18. Gascoyne P, Satayavivad J, Ruchirawat M (2004) Microfluidic approaches to malaria detection. Acta Trop 89:357–369CrossRefGoogle Scholar
  19. Grier DG (2003) A revolution in optical manipulation. Nature 42:810–816CrossRefGoogle Scholar
  20. Hughes MP (2002) Strategies for dielectrophoretic separation in laboratory-on-a-chip systems. Electrophor Rev 23:2569–2582CrossRefGoogle Scholar
  21. Iliescu C, Xu GL, Ong PL, Leck KJ (2007) Dielectrophoretic separation of biological samples in a 3D filtering chip. J Micromech Microeng 17:S128–S136CrossRefGoogle Scholar
  22. Jager EWH, Inganas O, Lundstrom I (2000) Microrobots for micrometer-size objects in aqueous media: potential tools for single-cell manipulation. Science 288:2335–2338CrossRefGoogle Scholar
  23. Jamshidi et al (2008) Dynamic manipulation and separation of individual semiconducting and metallic nanowires. Nat Photonics 2:86–89Google Scholar
  24. Kang Y, Li D, Kalams SA, Eid JE (2008) DC-Dielectrophoretic separation of biological cells by size. Biomed Microdevices 10:243–249CrossRefGoogle Scholar
  25. Lien KY, Lin WY, Lee YF, Wang CH, Lei HY, Lee GB (2008) Microfluidic systems integrated with a sample pretreatment device for fast nucleic-acid amplification. J Microelectromech Syst 17:288–301CrossRefGoogle Scholar
  26. Liu Y, Sonek GJ, Berns MW, Tromberg BJ (1996) Physiological monitoring of optically trapped cells: assessing the effects of confinement by 1064-nm laser tweezers using microfluorometry. Biophys J 71:2158–2167CrossRefGoogle Scholar
  27. Liu SD, Lee SC, Chern MY (2001) Hydrogenated amorphous silicon–germanium PIN X-ray detector. IEEE Trans Electron Devices 48:1564–1567CrossRefGoogle Scholar
  28. Loveland RJ, Spear WE, Al-Sharboty A (1973) Photoconductivity and absorption in amorphous Si. J Noncryst Solids 13:55–68CrossRefGoogle Scholar
  29. MacDonald MP, Spalding GC, Dholakia K (2003) Microfluidic sorting in an optical lattice. Nature 426:421–424CrossRefGoogle Scholar
  30. Maranesi N, Romani A, Medoro G, Altomare L, Leonardi A, Tartagni M, Guerrieri R (2004) A CMOS chip for individual cell manipulation and detection. J Solid State Circuits 38:2297–2305Google Scholar
  31. Markx GH, Talary MS, Pethig R (1994) Separation of viable and non-viable yeast using dielectrophoresis. J Biotechnol 32:29–37CrossRefGoogle Scholar
  32. Miltenyi S, Müller W, Weichel W, Radbruch A (1990) High gradient magnetic cell separation with MACS. Cytometry 11(2):231–238CrossRefGoogle Scholar
  33. Neuman KC, Chadd EH, Liou GF, Bergman K, Block SM (1999) Characterization of photodamage to Escherichia coli in optical traps. Biophys J 77:2856–2863CrossRefGoogle Scholar
  34. Ohta AT, Chiou PY, Phan HL, Sherwood SW, Yang JM, Lau ANK, Hsu HY, Jamshidi A, Wu MC (2007a) Optically controlled cell discrimination and trapping using optoelectronic tweezers. IEEE J Sel Top Quantum Electron 13:235–243CrossRefGoogle Scholar
  35. Ohta AT, Chiou PY, Han TH, Liao JC, McCabe ERB, Yu F, Sun R, Wu MC (2007b) Dynamic cell and microparticle control via optoelectronic tweezers. J Microelectromech Syst 16:491–499CrossRefGoogle Scholar
  36. Pohl HA (1978) Dielectrophoresis. Cambridge University Press, CambridgeGoogle Scholar
  37. Street RA (1991) Hydrogenated amorphous silicon. Cambridge University Press, New YorkGoogle Scholar
  38. Stutzmann M, Jackson WB, Tsai CC (1985) Light-induced metastable defects in hydrogenated amorphous silicon: a systematic study. Phys Rev B Condens Matter 32:23–47Google Scholar
  39. Urdaneta M, Smela E (2008) The design of dielectrophoretic flow-through sorters using a figure of merit. J Micromech Microeng 18:015001–015009CrossRefGoogle Scholar
  40. Voldman J (2006) Electrical forces for microscale cell manipulation. Annu Rev Biomed Eng 8:425–454CrossRefGoogle Scholar
  41. Vulto P, Medoro G, Altomare L, Urban GA, Tartagni M, Guerrieri R, Manaresi N (2006) Selective sample recovery of DEP-separated cells and particles by phaseguide-controlled laminar flow. J Micromech Microeng 16:1847–1853CrossRefGoogle Scholar
  42. Wang MM, Tu E, Raymond DE, Yang JM, Zhang H, Hagen N, Dees B, Mercer EM, Forster AH, Kariv I, Marchand PJ, Butler WF (2004) Microfluidic sorting of mammalian cells by optical force switching. Nat Biotechnol 23:83–87CrossRefGoogle Scholar
  43. Wei JH, Lee SC (1993) Electrical and optical properties of implanted amorphous silicon. J Appl Phys 76:1033–1040CrossRefGoogle Scholar
  44. Yamada M, Tsud KKY, Kobayashi J, Yamato M, Seki M, Okano T (2007) Microfluidic devices for size-dependent separation of liver cells. Biomed Microdevices 9:637–645CrossRefGoogle Scholar
  45. Zhang X, Cooper JM, Monaghanb PB, Haswell SJ (2006) Continuous flow separation of particles within an asymmetric microfluidic device. Lab Chip 6:561–566CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Department of Engineering ScienceNational Cheng Kung UniversityTainanTaiwan

Personalised recommendations