Advertisement

Microfluidics and Nanofluidics

, Volume 8, Issue 1, pp 57–72 | Cite as

A novel experimental setup for gas microflows

  • Jeerasak Pitakarnnop
  • Stelios Varoutis
  • Dimitris Valougeorgis
  • Sandrine Geoffroy
  • Lucien Baldas
  • Stéphane Colin
Research Paper

Abstract

A new experimental setup for flow rate measurement of gases through microsystems is presented. Its principle is based on two complementary techniques, called droplet tracking method and constant-volume method. Experimental data on helium and argon isothermal flows through rectangular microchannels are presented and compared with computational results based on a continuum model with second-order boundary conditions and on the linearized kinetic BGK equation. A very good agreement is found between theory and experiment for both gases, assuming purely diffuse accommodation at the walls. Also, some experimental data for a binary mixture of monatomic gases are presented and compared with kinetic theory based on the McCormack model.

Keywords

Microfluidics Rarefied gas flow Experimental setup Micro flow rate measurement Discrete velocity method Slip flow Transition flow 

Notes

Acknowledgments

The support of the European Community under grant PITN-GA-2008-215504, ‘Gas flows in Micro Electro Mechanical Systems’, and the support of EGIDE under grant PHC-15080QE, ‘Ecoulements types de mélanges gazeux dans les nano et microsystèmes à vocation biologique” are gratefully acknowledged.

References

  1. Arkilic EB, Breuer KS et al (2001) Mass flow and tangential momentum accommodation in silicon micromachined channels. J Fluid Mech 437:29–43zbMATHCrossRefGoogle Scholar
  2. Aubert C, Colin S (2001) High-order boundary conditions for gaseous flows in rectangular microchannels. Microscale Thermophys Eng 5(1):41–54CrossRefGoogle Scholar
  3. Bergoglio M, Calcatelli A et al (1995) Gas flow rate measurements for leak calibration. Vacuum 46(8–10):763–765CrossRefGoogle Scholar
  4. Cercignani C, Daneri A (1963) Flow of a rarefied gas between two parallel plates. J Appl Phys 34(12):3509–3513CrossRefMathSciNetGoogle Scholar
  5. Cercignani C, Illner R et al (1994) The mathematical theory of dilute gases. Springer, New YorkzbMATHGoogle Scholar
  6. Chapman S, Cowling TG (1952) The mathematical theory of non-uniform gases. University Press, CambridgeGoogle Scholar
  7. Colin S (2005) Rarefaction and compressibility effects on steady and transient gas flows in microchannels. Microfluid Nanofluid 1(3):268–279CrossRefGoogle Scholar
  8. Colin S, Lalonde P et al (2004) Validation of a second-order slip flow model in rectangular microchannels. Heat Transf Eng 25(3):23–30CrossRefGoogle Scholar
  9. Deissler RG (1964) An analysis of second-order slip flow and temperature-jump boundary conditions for rarefied gases. Int J Heat Mass Transf 7:681–694zbMATHCrossRefGoogle Scholar
  10. Ewart T (2007) Etude des écoulements gazeux isothermes en microconduit: du régime hydrodynamique au proche régime moléculaire libre. PhD Thesis Report, Ecole Polytechnique Universitaire de Marseille, FranceGoogle Scholar
  11. Ewart T, Perrier P et al (2006) Mass flow rate measurements in gas micro flows. Exp Fluids 41(3):487–498CrossRefGoogle Scholar
  12. Ewart T, Perrier P et al (2007) Mass flow rate measurements in a microchannel, from hydrodynamic to near free molecular regimes. J Fluid Mech 584:337–356zbMATHCrossRefGoogle Scholar
  13. Hadjiconstantinou NG (2003) Comment on Cercignani’s second-order slip coefficient. Phys Fluids 15(8):2352–2354CrossRefMathSciNetGoogle Scholar
  14. Harley JC, Huang Y et al (1995) Gas flow in micro-channels. J Fluid Mech 284:257–274CrossRefGoogle Scholar
  15. Jousten K, Menzer H et al (2002) A new fully automated gas flowmeter at the PTB for flow rates between 10–13 mol/s and 10–6 mol/s. Metrologia 39(6):519–529CrossRefGoogle Scholar
  16. Kandlikar SG, Garimella S et al (2006) Heat transfer and fluid flow in minichannels and microchannels. Elsevier, OxfordGoogle Scholar
  17. Lalonde P (2001) Etude expérimentale d’écoulements gazeux dans les microsystèmes à fluides. PhD Thesis Report, Institut National des Sciences Appliquées de Toulouse, FranceGoogle Scholar
  18. Maurer J, Tabeling P et al (2003) Second-order slip laws in microchannels for helium and nitrogen. Phys Fluids 15(9):2613–2621CrossRefGoogle Scholar
  19. Maxwell JC (1879) On stresses in rarefied gases arising from inequalities of temperature. Philos Trans R Soc Lond 170:231–256CrossRefGoogle Scholar
  20. McCulloh KE, Tilford CR et al (1987) Low-range flowmeters for use with vacuum and leak standards. J Vac Sci Technol A 5(3):376–381CrossRefGoogle Scholar
  21. Naris S, Valougeorgis D (2008) Rarefied gas flow in a triangular duct based on a boundary fitted lattice. Eur J Mech B Fluids 27(6):810–822zbMATHCrossRefMathSciNetGoogle Scholar
  22. Naris S, Valougeorgis D et al (2005) Flow of gaseous mixtures through rectangular microchannels driven by pressure, temperature, and concentration gradients. Phys Fluids 17(10): 100607:1–12Google Scholar
  23. Pong K-C, Ho C-M et al (1994) Non-linear pressure distribution in uniform microchannels. In: Bandyopadhyay PR, Breuer KS, Blechinger CJ (Eds). Application of microfabrication to fluid mechanics. ASME, New York, FED-197: 51–56Google Scholar
  24. Sharipov F (1999) Rarefied gas flow through a long rectangular channel. J Vac Sci Technol A 17(5):3062–3066CrossRefGoogle Scholar
  25. Sharipov F, Seleznev V (1998) Data on internal rarefied gas flows. J Phys Chem Ref Data 27(3):657–706CrossRefGoogle Scholar
  26. Valougeorgis D, Naris S (2003) Acceleration schemes of the discrete velocity method: gaseous flows in rectangular microchannels. SIAM J Sci Comput 25(2):534–552zbMATHCrossRefMathSciNetGoogle Scholar
  27. Varoutis S, Naris S et al (2009) “Computational and experimental study of gas flows through long channels of various cross sections in the whole range of the Knudsen number. J Vac Sci Technol A 27(1):89–100CrossRefGoogle Scholar
  28. Zohar Y, Lee SYK et al (2002) Subsonic gas flow in a straight and uniform microchannel. J Fluid Mech 472:125–151zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Jeerasak Pitakarnnop
    • 1
  • Stelios Varoutis
    • 2
  • Dimitris Valougeorgis
    • 2
  • Sandrine Geoffroy
    • 1
  • Lucien Baldas
    • 1
  • Stéphane Colin
    • 1
  1. 1.LGMT (Laboratoire de Génie Mécanique de Toulouse), INSA, UPSUniversité de ToulouseToulouseFrance
  2. 2.Department of Mechanical and Industrial EngineeringUniversity of ThessalyVolosGreece

Personalised recommendations