Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

A novel experimental setup for gas microflows

  • 548 Accesses

  • 92 Citations


A new experimental setup for flow rate measurement of gases through microsystems is presented. Its principle is based on two complementary techniques, called droplet tracking method and constant-volume method. Experimental data on helium and argon isothermal flows through rectangular microchannels are presented and compared with computational results based on a continuum model with second-order boundary conditions and on the linearized kinetic BGK equation. A very good agreement is found between theory and experiment for both gases, assuming purely diffuse accommodation at the walls. Also, some experimental data for a binary mixture of monatomic gases are presented and compared with kinetic theory based on the McCormack model.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13


  1. Arkilic EB, Breuer KS et al (2001) Mass flow and tangential momentum accommodation in silicon micromachined channels. J Fluid Mech 437:29–43

  2. Aubert C, Colin S (2001) High-order boundary conditions for gaseous flows in rectangular microchannels. Microscale Thermophys Eng 5(1):41–54

  3. Bergoglio M, Calcatelli A et al (1995) Gas flow rate measurements for leak calibration. Vacuum 46(8–10):763–765

  4. Cercignani C, Daneri A (1963) Flow of a rarefied gas between two parallel plates. J Appl Phys 34(12):3509–3513

  5. Cercignani C, Illner R et al (1994) The mathematical theory of dilute gases. Springer, New York

  6. Chapman S, Cowling TG (1952) The mathematical theory of non-uniform gases. University Press, Cambridge

  7. Colin S (2005) Rarefaction and compressibility effects on steady and transient gas flows in microchannels. Microfluid Nanofluid 1(3):268–279

  8. Colin S, Lalonde P et al (2004) Validation of a second-order slip flow model in rectangular microchannels. Heat Transf Eng 25(3):23–30

  9. Deissler RG (1964) An analysis of second-order slip flow and temperature-jump boundary conditions for rarefied gases. Int J Heat Mass Transf 7:681–694

  10. Ewart T (2007) Etude des écoulements gazeux isothermes en microconduit: du régime hydrodynamique au proche régime moléculaire libre. PhD Thesis Report, Ecole Polytechnique Universitaire de Marseille, France

  11. Ewart T, Perrier P et al (2006) Mass flow rate measurements in gas micro flows. Exp Fluids 41(3):487–498

  12. Ewart T, Perrier P et al (2007) Mass flow rate measurements in a microchannel, from hydrodynamic to near free molecular regimes. J Fluid Mech 584:337–356

  13. Hadjiconstantinou NG (2003) Comment on Cercignani’s second-order slip coefficient. Phys Fluids 15(8):2352–2354

  14. Harley JC, Huang Y et al (1995) Gas flow in micro-channels. J Fluid Mech 284:257–274

  15. Jousten K, Menzer H et al (2002) A new fully automated gas flowmeter at the PTB for flow rates between 10–13 mol/s and 10–6 mol/s. Metrologia 39(6):519–529

  16. Kandlikar SG, Garimella S et al (2006) Heat transfer and fluid flow in minichannels and microchannels. Elsevier, Oxford

  17. Lalonde P (2001) Etude expérimentale d’écoulements gazeux dans les microsystèmes à fluides. PhD Thesis Report, Institut National des Sciences Appliquées de Toulouse, France

  18. Maurer J, Tabeling P et al (2003) Second-order slip laws in microchannels for helium and nitrogen. Phys Fluids 15(9):2613–2621

  19. Maxwell JC (1879) On stresses in rarefied gases arising from inequalities of temperature. Philos Trans R Soc Lond 170:231–256

  20. McCulloh KE, Tilford CR et al (1987) Low-range flowmeters for use with vacuum and leak standards. J Vac Sci Technol A 5(3):376–381

  21. Naris S, Valougeorgis D (2008) Rarefied gas flow in a triangular duct based on a boundary fitted lattice. Eur J Mech B Fluids 27(6):810–822

  22. Naris S, Valougeorgis D et al (2005) Flow of gaseous mixtures through rectangular microchannels driven by pressure, temperature, and concentration gradients. Phys Fluids 17(10): 100607:1–12

  23. Pong K-C, Ho C-M et al (1994) Non-linear pressure distribution in uniform microchannels. In: Bandyopadhyay PR, Breuer KS, Blechinger CJ (Eds). Application of microfabrication to fluid mechanics. ASME, New York, FED-197: 51–56

  24. Sharipov F (1999) Rarefied gas flow through a long rectangular channel. J Vac Sci Technol A 17(5):3062–3066

  25. Sharipov F, Seleznev V (1998) Data on internal rarefied gas flows. J Phys Chem Ref Data 27(3):657–706

  26. Valougeorgis D, Naris S (2003) Acceleration schemes of the discrete velocity method: gaseous flows in rectangular microchannels. SIAM J Sci Comput 25(2):534–552

  27. Varoutis S, Naris S et al (2009) “Computational and experimental study of gas flows through long channels of various cross sections in the whole range of the Knudsen number. J Vac Sci Technol A 27(1):89–100

  28. Zohar Y, Lee SYK et al (2002) Subsonic gas flow in a straight and uniform microchannel. J Fluid Mech 472:125–151

Download references


The support of the European Community under grant PITN-GA-2008-215504, ‘Gas flows in Micro Electro Mechanical Systems’, and the support of EGIDE under grant PHC-15080QE, ‘Ecoulements types de mélanges gazeux dans les nano et microsystèmes à vocation biologique” are gratefully acknowledged.

Author information

Correspondence to Stéphane Colin.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pitakarnnop, J., Varoutis, S., Valougeorgis, D. et al. A novel experimental setup for gas microflows. Microfluid Nanofluid 8, 57–72 (2010).

Download citation


  • Microfluidics
  • Rarefied gas flow
  • Experimental setup
  • Micro flow rate measurement
  • Discrete velocity method
  • Slip flow
  • Transition flow