Microfluidics and Nanofluidics

, Volume 7, Issue 2, pp 149–167 | Cite as

Applications, techniques, and microfluidic interfacing for nanoscale biosensing

  • Jungkyu Kim
  • Michael Junkin
  • Deok-Ho Kim
  • Seunglee Kwon
  • Young Shik Shin
  • Pak Kin Wong
  • Bruce K. Gale
Review Paper


Biosensors based on nanotechnology are rapidly developing and are becoming widespread in the biomedical field and analytical chemistry. For these nanobiosensors to reach their potential, they must be integrated with appropriate packaging techniques, which are usually based on nano/microfluidics. In this review we provide a summary of the latest developments in nanobiosensors with a focus on label-based (fluorescence and nanoparticle) and label-free methods (surface plasmon resonance, micro/nanocantilever, nanowires, and nanopores). An overview on how these sensors interface with nano/microfluidics is then presented and the latest papers in the area summarized.


Surface Plasmon Resonance PDMS Surface Enhance Raman Scattering Surface Acoustic Wave Localize Surface Plasmon Resonance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is supported by the Prevent Cancer Foundation and Arizona Biomedical Research Commission (to P. K. W.) and the National Science Foundation (B. K. G).


  1. Ackermann KR, Henkel T, Popp J (2007) Quantitative online detection of low concentrated drugs via a SERS microfluidic system. ChemPhysChem 8:2665–2670CrossRefGoogle Scholar
  2. Agrawal A, Zhang C, Byassee T, Tripp RA, Nie S (2006) Counting single native biomolecules and intact viruses with color-coded nanoparticles. Anal Chem 78:1061–1070CrossRefGoogle Scholar
  3. Albani JR (2007) Principles and applications of fluorescence spectroscopy. Wiley-Blackwell, New JerseyCrossRefGoogle Scholar
  4. Albrecht MG, Creighton JA (1977) Anomalously intense Raman spectra of pyridine at a silver electrode. J Am Chem Soc 99:5215–5219CrossRefGoogle Scholar
  5. Alivisatos P (2004) The use of nanocrystals in biological detection. Nat Biotechnol 22:47–52CrossRefGoogle Scholar
  6. Aubin KL, Huang J, Park SM, Yang Y, Kondratovich M, Craighead HG, Ilic BR (2007) Microfluidic encapsulated nanoelectromechanical resonators. J Vac Sci Technol B 25:1171–1174CrossRefGoogle Scholar
  7. Bailey RC, Kwong GA, Radu CG, Witte ON, Heath JR (2007) DNA-encoded antibody libraries: a unified platform for multiplexed cell sorting and detection of genes and proteins. J Am Chem Soc 129:1959–1967CrossRefGoogle Scholar
  8. Banholzer MJ, Millstone JE, Qin L, Mirkin CA (2008) Rationally designed nanostructures for surface-enhanced Raman spectroscopy. Chem Soc Rev 37:885–897CrossRefGoogle Scholar
  9. Bell SEJ, Sirimuthu NMS (2006) Surface-enhanced Raman spectroscopy (SERS) for sub-micromolar detection of DNA/RNA mononucleotides. J Am Chem Soc 128:15580–15581CrossRefGoogle Scholar
  10. Benchaib A, Delorme R, Pluvinage M, Bryon PA, Souchier C (1996) Evaluation of five green fluorescence-emitting streptavidin-conjugated fluorochromes for use in immunofluorescence microscopy. Histochem Cell Biol 106:253–256CrossRefGoogle Scholar
  11. Biswal SL, Raorane D, Chaiken A, Birecki H, Majumdar A (2006) Nanomechanical detection of DNA melting on microcantilever surfaces. Anal Chem 78:7104–7109CrossRefGoogle Scholar
  12. Bizzarri AR, Cannistraro S (2007) SERS detection of thrombin by protein recognition using functionalized gold nanoparticles. Nanomed Nanotechnol Biol Med 3:306–310CrossRefGoogle Scholar
  13. Bonham AJ, Braun G, Pavel I, Moskovits M, Reich NO (2007) Detection of sequence-specific protein-DNA interactions via surface enhanced resonance Raman scattering. J Am Chem Soc 129:14572–14573CrossRefGoogle Scholar
  14. Braun G, Lee SJ, Dante M, Nguyen TQ, Moskovits M, Reich N (2007) Surface-enhanced Raman spectroscopy for DNA detection by nanoparticle assembly onto smooth metal films. J Am Chem Soc 129:6378–6379CrossRefGoogle Scholar
  15. Briggs MS, Burns DD, Cooper ME, Gregory SJ (2000) A pH sensitive fluorescent cyanine dye for biological applications. Chem Commun 23:2323–2324CrossRefGoogle Scholar
  16. Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016CrossRefGoogle Scholar
  17. Bunimovich YL, Shin YS, Yeo WS, Amori M, Kwong G, Heath JR (2006) Quantitative real-time measurements of DNA hybridization with alkylated nonoxidized silicon nanowires in electrolyte solution. J Am Chem Soc 128:16323–16331CrossRefGoogle Scholar
  18. Burg TP, Godin M, Knudsen SM, Shen W, Carlson G, Foster JS, Babcock K, Manalis SR (2007) Weighing of biomolecules, single cells and single nanoparticles in fluid. Nature 446:1066–1069CrossRefGoogle Scholar
  19. Cai H, Wang Y, He P, Fang Y (2002) Electrochemical detection of DNA hybridization based on silver-enhanced gold nanoparticle label. Anal Chim Acta 469:165–172CrossRefGoogle Scholar
  20. Chan WCW, Nie SM (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018CrossRefGoogle Scholar
  21. Chan WCW, Maxwell DJ, Gao X, Bailey RE, Han M, Nie S (2002) Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol 13:40–46CrossRefGoogle Scholar
  22. Chang-yen DA, Myszka D, Gale BK (2006) A novel PDMS Microfluidic spotter for fabrication of protein chips and microarrays. J Microelectromech Syst 5:1145–1151CrossRefGoogle Scholar
  23. Chen L, Choo J (2008) Recent advances in surface-enhanced Raman scattering detection technology for microfluidic chips. Electrophoresis 29:1815–1828CrossRefGoogle Scholar
  24. Cheng MM-C, Cuda G, Bunimovich YL, Gaspari M, Heath JR, Hill HD, Mirkin CA, Nijdam AJ, Terracciano R, Thundat T, Ferrari M (2006) Nanotechnologies for biomolecular detection and medical diagnostics. Curr Opin Chem Biol 10:11–19CrossRefGoogle Scholar
  25. Cheong KH, Yi DK, Lee JG, Park JM, Kim MJ, Edel JB, Ko C (2008) Gold nanoparticles for one step DNA extraction and real-time PCR of pathogens in a single chamber. Lab Chip 8:810–813CrossRefGoogle Scholar
  26. Chinowsky TM, Soelberg SD, Baker P, Swanson NR, Kauffman P, Mactutis A, Grow MS, Atmar R, Yee SS, Furlong CE (2007) Portable 24-analyte surface plasmon resonance instruments for rapid, versatile biodetection. Biosens Bioelectron 22:2268–2275CrossRefGoogle Scholar
  27. Cross SE, Jin YS, Rao J, Gimzewski JK (2007) Nanomechanical analysis of cells from cancer patients. Nat Nanotechnol 2:780–783CrossRefGoogle Scholar
  28. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis and nanotechnology. Chem Rev 104:293–346CrossRefGoogle Scholar
  29. Dekker C (2007) Solid-state nanopores. Nat Nanotechnol 2:209–215CrossRefGoogle Scholar
  30. deMello AJ (2006) Control and detection of chemical reaction in microfluidic systems. Nature 442:394–402CrossRefGoogle Scholar
  31. Doering WE, Piotti ME, Natan MJ, Freeman RG (2007) SERS as a foundation for nanoscale, optically detected biological labels. Adv Mater 19:3100–3108CrossRefGoogle Scholar
  32. Dootz R, Otten A, Köster S, Struth B, Pfohl T (2006) Evolution of DNA compaction in microchannels. J Phys Condens Matter 18:S639–S652CrossRefGoogle Scholar
  33. Driskell JD, Shanmukh S, Liu Y, Chaney SB, Tang XJ, Zhao YP, Dluhy RA (2008) The use of aligned silver nanorod arrays prepared by oblique angle deposition as surface enhanced Raman scattering substrates. J Phys Chem C 112:895–901CrossRefGoogle Scholar
  34. Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A (2002) In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298:1759–1762CrossRefGoogle Scholar
  35. Dubus S, Gravel J-F, Drogoff BL, Nobert P, Veres T, Boudreau D (2006) PCR-free DNA detection using a magnetic bead-supported polymeric transducer and microelectromagnetic traps. Anal Chem 78:4457–4464CrossRefGoogle Scholar
  36. Ellington AD, Robertson MP, Bull J (1997) In vitro evolution—ribozymes in wonderland. Science 276:546–547CrossRefGoogle Scholar
  37. Enderlein J, Ambrose WP, Goodwin PM, Keller RA (1999) Fluorescence detection of single molecules applicable to small volume assays. In: Kohler JM, TMHPS (eds) Microsystem technology: a powerful tool for biomolecular studies. Birkhauser, BaselGoogle Scholar
  38. Endo T, Kerman K, Nagatani N, Hiepa HM, Kim D-K, Yonezawa Y, Nakano K, Tamiya E (2006) Multiple label-free detection of antigen-antibody reaction using localized surface plasmon resonance-based core-shell structured nanoparticle layer nanochip. Anal Chem 78:6465–6475CrossRefGoogle Scholar
  39. Englebienne P, Hoonacker AV, Verhas M (2003) Surface plasmon resonance: principles, methods and applications in biomedical sciences. Spectroscopy 17:255–273Google Scholar
  40. Fan R, Karnik R, Yue M, Li D, Majumdar A, Yang P (2005) DNA translocation in inorganic nanotubes. Nano Lett 5:1633–1637CrossRefGoogle Scholar
  41. Farrer RA, Butterfield FL, Chen VW, Fourkas JT (2005) Highly efficient multiphoton-absorption-induced luminescence from gold nanoparticles. Nano Lett 5:1139–1142CrossRefGoogle Scholar
  42. Feltis BN, Sexton BA, Glenn FL, Best MJ, Wilkins M, Davis TJ (2008) A hand-held surface plasmon resonance biosensor for the detection of ricin and other biological agents. Biosens Bioelectron 23:1131–1136CrossRefGoogle Scholar
  43. Fleischmann M, Hendra PJ, McQuillan AJ (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26:163–166CrossRefGoogle Scholar
  44. Fortina P, Kricka LJ, Graves DJ, Park J, Hyslop T, Tam F, Halas N, Surrey S, Waldman SA (2007) Applications of nanoparticles to diagnostics and therapeutics in colorectal cancer. Trends Biotechnol 25:145–152CrossRefGoogle Scholar
  45. Fritz J, Baller MK, Lang HP, Rothuizen H, Vettiger P, Meyer E, Guntherodt HJ, Gerber C, Gimzewski JK (2000) Translating biomolecular recognition into nanomechanics. Science 288:316–318CrossRefGoogle Scholar
  46. Fu CC, Lee HY, Chen K, Lim TS, Wu HY, Lin PK, Wei PK, Tsao PH, Chang HC, Fann W (2007) Characterization and application of single fluorescent nanodiamonds as cellular biomarkers. Proc Natl Acad Sci USA 104:727–732CrossRefGoogle Scholar
  47. Galopin E, Beaugeois M, Pinchemel B, Camart J-C, Bouazaoui M, Thomy V (2007) SPR biosensing coupled to a digital microfluidic microstreaming system. Biosens Bioelectron 23:746–750CrossRefGoogle Scholar
  48. Gary CH (1993) The basics of nonradioactive detection systems. In: Methods in nonradioactive detection, p. 4 Medix Biotech, Inc., FosterGoogle Scholar
  49. Geddes CD, Parfenov A, Roll D, Gryczynski I, Malicka J, Lakowicz JR (2003) Silver fractal-like structures for metal-enhanced fluorescence: enhanced fluorescence intensities and increased probe photostabilities. J Fluoresc 13:267–276CrossRefGoogle Scholar
  50. Giesfeldt KS, Connatser RM, De Jesus MA, Dutta P, Sepaniak MJ (2005) Gold-polymer nanocomposites: studies of their optical properties and their potential as SERS substrates. J Raman Spectrosc 36:1134–1142CrossRefGoogle Scholar
  51. Griffiths J (2008) The realm of the nanopore: interest in nanoscale research has skyrocketed, and the humble pore has become a king. Anal Chem 80:23–27CrossRefGoogle Scholar
  52. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021CrossRefGoogle Scholar
  53. Gupta AK, Nair PR, Akin D, Ladisch MR, Broyles S, Alam MA, Bashir R (2006) Anomalous resonance in a nanomechanical biosensor. Proc Natl Acad Sci USA 103:13362–13367CrossRefGoogle Scholar
  54. Haes AJ, Chang L, Klein WL, Duyne RPV (2005) Detection of a biomarker for Alzheimer’s disease form synthetic and clinical sample using a nanoscale optical biosensor. J Am Chem Soc 127:1164–1171CrossRefGoogle Scholar
  55. Haes AJ, Hall WP, Chang L, Klein WL, Duyne RPV (2004) A localized surface plasmon resonance biosensor: first steps toward an assay for Alzheimer’s disease. Nano Lett 4:1029–1034CrossRefGoogle Scholar
  56. Hansen KM, Thundat T (2005) Microcantilever biosensors. Methods 37:57–64CrossRefGoogle Scholar
  57. Haustein E, Schwille P (2007) Fluorescence correlation spectroscopy: novel variations of an established technique. Annu Rev Biophys Biomol Struct 36:151–169CrossRefGoogle Scholar
  58. Hering K, Cialla D, Ackermann K, Dörfer T, Möller R, Schneidewind H, Mattheis R, Fritzsche W, Rösch P, Popp J (2008) SERS: a versatile tool in chemical and biochemical diagnostics. Anal Bioanal Chem 390:113–124CrossRefGoogle Scholar
  59. Hermanson GT (1996) Chapter 8. Tags and probes. In: Bioconjugate techniques. Academic Press, San DiegoGoogle Scholar
  60. Hinterdorfer P, Dufrene YF (2006) Detection and localization of single molecular recognition events using atomic force microscopy. Nat Methods 3:347–355CrossRefGoogle Scholar
  61. Ho YP, Kung MC, Yang S, Wang TH (2005) Multiplexed hybridization detection with multicolor colocalization of quantum dot nanoprobes. Nano Lett 5:1693–1697CrossRefGoogle Scholar
  62. Ho Y-P, Chen HH, Leong KW, Wang T-H (2006) Evaluating the intracellular stability and unpacking of DNA nanocomplexes by quantum dots-FRET. J Controlled Release 116:83–89CrossRefGoogle Scholar
  63. Hosokawa K, Sato K, Ichikawa N, Maeda M (2004) Power-free poly(dimethylsiloxane) microfluidic devices for gold nanoparticle-based DNA analysis. Lab Chip 4:181–185CrossRefGoogle Scholar
  64. Hsing I-M, Xu Y, Zhao W (2007) Micro and nano magnetic particles for applications in biosensing. Electroanalysis 19:755–768CrossRefGoogle Scholar
  65. Huan-Xiang Z (2001) Disparate ionic-strength dependencies of on and off rates in protein–protein association. Biopolymers 59:427–433CrossRefGoogle Scholar
  66. Hun X, Zhang Z (2007) Functionalized fluorescent core-shell nanoparticles used as a fluorescent lavels in fluoroimmunoassay for IL-6. Biosens Bioelectron 22:2743–2748CrossRefGoogle Scholar
  67. Huo Q, Worden JG (2007) Monofunctional gold nanoparticles: synthesis and applications. J Nanopart Res 9:1013–1025CrossRefGoogle Scholar
  68. Iqbal SM, Akin D, Bashir R (2007) Solid-state nanopore channels with DNA selectivity. Nat Nanotechnol 2:243–248CrossRefGoogle Scholar
  69. Jaiswal JK, Mattoussi H, Mauro JM, Simon SM (2003) Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat Biotechnol 21:47–51CrossRefGoogle Scholar
  70. Jaiswal JK, Goldman ER, Mattoussi H, Simon SM (2004) Use of quantum dots for live cell imaging. Nat Methods 1:73–78CrossRefGoogle Scholar
  71. Jamieson T, Bakhshi R, Petrova D, Pocock R, Imani M, Seifalian AM (2007) Biological applications of quantum dots. Biomaterials 28:4717–4732CrossRefGoogle Scholar
  72. Jayaraman S, Joo NS, Reitz B, Wine JJ, Verkman AS (2001) Submucosal gland secretions in airways from cystic fibrosis patients have normal [Na(+)] and pH but elevated viscosity. Proc Natl Acad Sci 98:8119–8123CrossRefGoogle Scholar
  73. Jeanmaire DL, Duyne RPV (1977) Surface Raman electrochemistry part I: heterocyclic, aromatic and aliphatic amines adsorbed on the anodized silver electrode. J Electroanal Chem 84:1–20CrossRefGoogle Scholar
  74. Jin R, Cao YC, Hao E, Métraux GS, Schatz GC, Mirkin CA (2003) Controlling anisotropic nanoparticle growth through plasmon excitation. Nature 425:487–490CrossRefGoogle Scholar
  75. Karst U (2006) Where the worlds of nanotechnology, materials science, and bioanalysis converge. Anal Bioanal Chem 384:559CrossRefGoogle Scholar
  76. Kessler C (1992) General aspects of nonradioactive labeling and detection. In: Nonradioactive labeling and detection of biomolecules. Springer, BerlinGoogle Scholar
  77. Kewal KJ (2003) Nanodiagnostics: application of nanotechnology in molecular diagnostics. Exp Rev Mol Diagn 3:153–161CrossRefGoogle Scholar
  78. Kewal KJ (2005a) Nanotechnology in clinical laboratory diagnostics. Clin Chim Acta 358:37–54CrossRefGoogle Scholar
  79. Kewal KJ (2005b) The role of nanobiotechnology in drug discovery. Drug Discov Today 10:1435–1442CrossRefGoogle Scholar
  80. Keyser UF, Koeleman BN, Dorp SV, Krapf D, Smeets RMM, Lemay SG, Dekker NH, Dekker C (2006) Direct force measurements on DNA in a solid-state nanopore. Nat Phys 2:473–477CrossRefGoogle Scholar
  81. Kiefer W (2007) Recent advances in linear and nonlinear Raman spectroscopy I. J Raman Spectrosc 38:1538–1553CrossRefGoogle Scholar
  82. Kim J, Kim J, Choi H, Lee S, Jun B, Yu K, Kuk E, Kim Y, Jeong D, Cho M, Lee Y (2006) Nanoparticle probes with surface enhanced Raman spectroscopic tags for cellular cancer targeting. Anal Chem 78:6967–6973CrossRefGoogle Scholar
  83. Kong J, Franklin NR, Zhou CW, Chapline MG, Peng S, Cho KJ, Dai HJ (2000) Nanotube molecular wires as chemical sensors. Science 287:622–625CrossRefGoogle Scholar
  84. Kuo T-C, Donald M, Cannon J, Chen Y, Tulock JJ, Shannon MA, Sweedler JV, Bohn PW (2003) Gateable nanofluidic interconnects for multilayered microfluidic separation systems. Anal Chem 75:1861–1867CrossRefGoogle Scholar
  85. Lanyon YH, De Marzi G, Watson YE, Quinn AJ, Gleeson JP, Redmond G, Arrigan DW (2007) Fabrication of nanopore array electrodes by focused ion beam milling. Anal Chem 79:3048–3055CrossRefGoogle Scholar
  86. Larson DR, Zipfel WR, Williams RM, Clark SW, Bruchez MP, Wise FW, Webb WW (2003) Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 300:1434–1436CrossRefGoogle Scholar
  87. Lechuga LM, Tamayo J, Alvarez M, Carrascosa LG, Yufera A, Doldan R, Peralias E, Rueda A, Plaza JA, Zinoviev K, Dominguez C, Zaballos A, Moreno M, Martinez C, Wenn D, Harris N, Bringer C, Bardinal V, Camps T, Vergnenegre C, Fontaine C, Diaz V, Bernad A (2006) A highly sensitive microsystem based on nanomechanical biosensors for genomics applications. Sens Actuators B Chem 118:2–10CrossRefGoogle Scholar
  88. Lee K-S, El-Sayed MA (2006) Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. J Phys Chem B 110:19220–19225CrossRefGoogle Scholar
  89. Lee K-H, Su Y-D, Chen S-J, Tseng F-G, Lee G-B (2007a) Microfluidic systems integrated with two-dimensional surface plasmon resonance phase imaging systems for microarray immunoassay. Biosens Bioelectron 23:466–472CrossRefGoogle Scholar
  90. Lee S, Mandic J, Van Vliet KJ (2007b) Chemomechanical mapping of ligand-receptor binding kinetics on cells. Proc Natl Acad Sci USA 104:9609–9614CrossRefGoogle Scholar
  91. Lefebure S, Dubois E, Cabuil V, Neveu S, Massart R (1998) Monodisperse magnetic nanoparticles: preparation and dispersion in water and oils. J Mater Res 13:2975–2981CrossRefGoogle Scholar
  92. Li G, Joshi V, White RL, Wang SX (2003) Detection of single micron-sized magnetic bead and magnetic nanoparticles using spin valve sensors for biological applications. J Appl Phys 93:7557–7559CrossRefGoogle Scholar
  93. Li G, Sun S, Wilson RJ, White RL, Pourmand N, Wang SX (2006) Spin valve sensors for ultrasensitive detection of superparamagnetic nanoparticles for biological applications. Sens Actuators A 126:98–106CrossRefGoogle Scholar
  94. Li M, Tang HX, Roukes ML (2007) Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications. Nat Nanotechnol 2:114–120CrossRefGoogle Scholar
  95. Lien V, Vollmer F (2007) Microfluidic flow rate detection based on integrated optical fiber cantilever. Lab Chip 7:1352–1356CrossRefGoogle Scholar
  96. Liu GL, Lu Y, Kim J, Doll JC, Lee LP (2005a) Magnetic nanocrescent as controllable surface-enhanced Raman scattering nanoprobes for biomolecular imaging. Adv Mater 17:2683–2688CrossRefGoogle Scholar
  97. Liu W-T, Zhu L, Qin Q-W, Zhang Q, Feng H, Ang S (2005b) Microfluidic device as a new platform for immunofluorescent detection of viruses. Lab Chip 5:1327–1330CrossRefGoogle Scholar
  98. Liu B, Archer CT, Burdine L, Gillette TG, Kodadek T (2007) Label transfer chemistry for the characterization of protein–protein interactions. J Am Chem Soc 129:12348–12349CrossRefGoogle Scholar
  99. Lucas LJ, Chesler JN, Yoon JY (2007) Lab-on-a-chip immunoassay for multiple antibodies using microsphere light scattering and quantum dot emission. Biosens Bioelectron 23:675–681CrossRefGoogle Scholar
  100. Luo C, Fu Q, Li H, Xu L, Sun M, Ouyang Q, Chen Y, Ji H (2005) PDMS microfludic device for optical detection of protein immunoassay using gold nanoparticles. Lab Chip 5:726–729CrossRefGoogle Scholar
  101. Luo Y, Yu F, Zare RN (2008) Microfluidic device for immunoassays based on surface plasmon resonance imaging. Lab Chip 8:694–700CrossRefGoogle Scholar
  102. Martin CR, Siwy ZS (2007) Learning nature’s way: biosensing with synthetic nanopores. Science 317:331–332CrossRefGoogle Scholar
  103. Masmanidis SC, Karabalin RB, De Vlaminck I, Borghs G, Freeman MR, Roukes ML (2007) Multifunctional nanomechanical systems via tunably coupled piezoelectric actuation. Science 317:780–783CrossRefGoogle Scholar
  104. Mason WT (1999) Fluorescent and luminescent probes for biological activity. Academic PressGoogle Scholar
  105. Maxwell DJ, Taylor JR, Nie S (2002) Self-assembled nanoparticle probes for recognition and detection of biomolecules. J Am Chem Soc 124:9606–9612CrossRefGoogle Scholar
  106. Medintz IL, Clapp AR, Mattoussi H, Goldman ER, Fisher B, Mauro JM (2003) Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nat Mater 2:630–638CrossRefGoogle Scholar
  107. Medintz IL, Konnert JH, Clapp AR, Stanish I, Twigg ME, Mattoussi H, Mauro JM, Deschamps JR (2004) A fluorescence resonance energy transfer-derived structure of a quantum dot-protein bioconjugate nanoassembly. PNAS 101:9612–9617CrossRefGoogle Scholar
  108. Meserve D, Wang Z, Zhang DD, Wong PK (2008) A double-stranded molecular probe for homogeneous nucleic acid analysis. Analyst 133:1013–1019CrossRefGoogle Scholar
  109. Miao XY, Lin LY (2007a) Large dielectrophoresis force and torque induced by localized surface plasmon resonance of Au nanoparticle array. Optics Lett 32:295–297CrossRefGoogle Scholar
  110. Miao XY, Lin LY (2007b) Trapping and manipulation of biological particles through a plasmonic platform. IEEE J Selected Topics Quantum Electron 13:1655–1662CrossRefGoogle Scholar
  111. Miao XY, Wilson BK, Lin LY (2008) Localized surface plasmon assisted microfluidic mixing. Appl Phys Lett 92:124108.1–124108.3Google Scholar
  112. Miller MM, Prinz GA, Cheng SF, Bounnak S (2002) Detection of a micron-sized magnetic sphere using a ring-shaped anisotropic magnetoresistance-based sensor: a model for a magnetoresistance-based biosensor. Appl Phys Lett 81:2211–2213CrossRefGoogle Scholar
  113. Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382:607–609CrossRefGoogle Scholar
  114. Mulvaney SP, Musick MD, Keating CD, Natan MJ (2003) Glass-coated, analyte-tagged nanoparticles: a new tagging system based on detection with surface-enhanced Raman scattering. Langmuir 19:4784–4790CrossRefGoogle Scholar
  115. Murphy L (2006) Biosensors and bioelectrochemistry. Curr Opin Chem Biol 10:177–184CrossRefGoogle Scholar
  116. Nair PR, Alam MA (2006) Performance limits of nanobiosensors. Appl Phys Lett 88:233120CrossRefGoogle Scholar
  117. Nakamura R, Tucker ES, Carlson IH (1991) Immunoassays in the clinical laboratory. In: Henry JBE (ed) Clinical diagnosis and management by laboratory methods. WB Saunders, Philadelphia, pp 870–871Google Scholar
  118. Nam J-M, Thaxton CS, Mirkin CA (2003) Nanoparticle-based bio-bar codes for the utlrasensitive detection of proteins. Science 301:1884–1886CrossRefGoogle Scholar
  119. Nam J-M, Stoeva SI, Mirkin CA (2004) Bio-bar-code-based dna detection with pcr-like sensitivity. J Am Chem Soc 126:5932–5933CrossRefGoogle Scholar
  120. Natarajan S, Katsamba PS, Miles A, Eckman J, Papalia GA, Rich RL, Gale BK, Myszka DG (2008) Continuous-flow microfluidic printing of proteins for array-based applications including surface plasmon resonance imaging 373:141–146Google Scholar
  121. Ngomsik A-F, Beeb A, Drayea M, Cotea G, Cabuilb V (2005) Magnetic nano- and microparticles for metal removal and environmental applications: a review. Comptes Rendus Chimie 8:963–970CrossRefGoogle Scholar
  122. Nguyena B., Taniousa FA, Wilson WD (2007) Biosensor-surface plasmon resonance: quantitative analysis of small molecule–nucleic acid interactions. Methods 42:150–161Google Scholar
  123. Nie S, Xing Y, Kim GJ, Simons J (2007) Nanotechnology application in cancer. Annu Rev Biomed Eng 9:257–288CrossRefGoogle Scholar
  124. Obata K, Tajima H, Yohda M, Matsunaga T (2002) Recent developments in laboratory automation using magnetic particles for genome analysis. Pharmacogenomics 3:697–708CrossRefGoogle Scholar
  125. Ormonde AD, Hicks EC, Castillo J, Van Duyne RP (2004) Nanosphere lithography: fabrication of large-area Ag nanoparticle arrays by convective self-assembly and their characterization by scanning UV-visible extinction spectroscopy. Langmuir The ACS J Surf Colloids 20:6927–6931Google Scholar
  126. Osborne SE, Matsumura I, Ellington AD (1997) Aptamers as therapeutic and diagnostic reagents: problems and prospects. Curr Opin Chem Biol 1:5–9CrossRefGoogle Scholar
  127. Ozsoz M, Erdem A, Kerman K, Ozkan D, Tugrul B, Topcuoglu N (2003) Electrochemical genosensor based on colloidal gold nanoparticles for the detection of factor V Leiden mutation using disposable pencil graphite electrodes. Anal Chem 75:2181–2187CrossRefGoogle Scholar
  128. Panchuk-Voloshina N, Haugland RP, Bishop-Stewart J, Bhalgat MK, Millard PJ, Mao F, Leung W-Y, Haugland RP (1999) Alexa dyes, a series of new fluorescent dyes that yield exceptionally bright, photostable conjugates. J Histochem Cytochem 47:1179–1188Google Scholar
  129. Park S-J, Taton TA, Mirkin CA (2002) Array-based electrical detection of DNA with nanoparticle probes. Science 295:1503–1506CrossRefGoogle Scholar
  130. Park T, Lee S, Seong GH, Choo J, Lee EK, Kim YS, Ji WH, Hwang SY, Gweon D-G, Lee S (2005) Highly sensitive signal detection of duplex dye-labelled DNA oligonucleotides in a PDMS microfludic chip: confocal surface-enhanced Raman spectroscopic study. Lab Chip 5:437–442CrossRefGoogle Scholar
  131. Park TJ, Lee SY, Lee SJ, Park JP, Yang KS, Lee KB, Ko S, Park JB, Kim T, Kim SK, Shin YB, Chung BH, Ku SJ, Kim DH, Choi IS (2006) Protein nanopatterns and biosensors using gold binding polypeptide as a fusion partner. Anal Chem 78:7197–7205CrossRefGoogle Scholar
  132. Patolsky F, Zheng G, Hayden O, Lakadamyali M, Zhuang X, Lieber CM (2004) Electrical detection of single viruses. Proc Natl Acad Sci USA 101:14017–14022CrossRefGoogle Scholar
  133. Patolsky F, Timko BP, Yu G, Fang Y, Greytak AB, Zheng G, Lieber CM (2006) Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays. Science 313:1100–1104CrossRefGoogle Scholar
  134. Patolsky F, Timko BP, Zheng G, Lieber CM (2007) Nanowire-based nanoelectronic devices in the life sciences. MRS Bull 32:142–149Google Scholar
  135. Perez JM, Josephson L, O’Loughlin T, Hogemann D, Weissleder R (2002) Magnetic relaxation switches capable of sensing molecular interactions. Nat Biotechnol 20:816–820Google Scholar
  136. Perez JM, Josephson L, Weissleder R (2004) Use of magnetic nanoparticles as nanosensors to probe for molecular interactions. Chem Biol Chem 5:261–264Google Scholar
  137. Perez-Juste J, Pastoriza-Santos I, Liz-Marzan LM, Mulvaney P (2005) Gold nanorods: synthesis, characterization and applications. Coord Chem Rev 249:1870–1901CrossRefGoogle Scholar
  138. Piorek BD, Lee SJ, Santiago JG, Moskovits M, Banerjee S, Meinhart CD (2007) Free-surface microfluidic control of surface-enhanced Raman spectroscopy for the optimized detection of airborne molecules. Proc Natl Acad Sci USA 104:18898–18901CrossRefGoogle Scholar
  139. Porter MD, Lipert RJ, Siperko LM, Wang G, Narayanan R (2008) SERS as a bioassay platform: fundamentals, design, and applications. Chem Soc Rev 37:1001–1011CrossRefGoogle Scholar
  140. Puleo CM, Yeh HC, Liu KJ, Wang TH (2008) Coupling confocal fluorescence detection and recirculating microfluidic control for single particle analysis in discrete nanoliter volumes. Lab Chip 8:822–825CrossRefGoogle Scholar
  141. Qian X-M, Nie SM (2008) Single-molecular and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications. Chem Soc Rev 37:912–920CrossRefGoogle Scholar
  142. Qian X-M, Peng XH, Ansari DO, Yin-Goan Q, Chen GZ, Shin DM, Yang L, Young AN, Wang MD, Nie SM (2008) In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat Biotechnol 26:83–90CrossRefGoogle Scholar
  143. Qin L, Banholzer MJ, Millstone JE, Mirkin CA (2007) Nanodisk codes. Nano Lett 7:3849–3853CrossRefGoogle Scholar
  144. Quist A, Chand A, Ramachandran S, Cohen D, Lal R (2006) Piezoresistive cantilever based nanoflow and viscosity sensor for microchannels. Lab Chip 6:1450–1454CrossRefGoogle Scholar
  145. Raman CV, Krishnan KS (1928) A new type of secondary radiation. Nature 121:501–502CrossRefGoogle Scholar
  146. Ramanathan K, Bangar MA, Yun M, Chen W, Myung NV, Mulchandani A (2005) Bioaffinity sensing using biologically functionalized conducting-polymer nanowire. J Am Chem Soc 127:496–497CrossRefGoogle Scholar
  147. Rhee M, Burns MA (2007) Nanopore sequencing technology: nanopore preparations. Trends Biotechnol 25:174–181CrossRefGoogle Scholar
  148. Rich RL, Cannon MJ, Jenkins J, Pandian P, Sundaram S, Magyar R, Brockman J, Lambert J, Myszka DG (2008) Extracting kinetic rate constants from surface plasmon resonance array systems. Anal Biochem 373:112–120CrossRefGoogle Scholar
  149. Riegger L, Grumann M, Nann T, Riegler J, Ehlert O, Bessler W, Mittenbuehler K, Urban G, Pastewka L, Brenner T, Zengerle R, Ducrée J (2006) Read-out concepts for multiplexed bead-based fluorescence immunoassays on centrifugal microfluidic platforms. Sens Actuators A Phys 126:455–462CrossRefGoogle Scholar
  150. Safarik I, Safarikova M (2004) Magnetic techniques for the isolation and purification of proteins and peptides. BioMagnetic Res Technol 2:1–17CrossRefGoogle Scholar
  151. Sato Y, Hosokawa K, Maeda M (2008) Detection of non-cross-linking interaction between DNA-modified gold nanoparticles and a DNA-modified flat gold surface using surface plasmon resonance imaging on a microchip. Colloids Surf B Biointerfaces 62:71–76CrossRefGoogle Scholar
  152. Sha MY, Xu H, Penn SG, Cromer R (2007) SERS nanoparticles: a new optical detection modality for cancer diagnosis. Nanomedicine 2:725–734CrossRefGoogle Scholar
  153. Squires TM, Messinger RJ, Manalis SR (2008) Making it stick: convection, reaction and diffusion in surface-based biosensors. Nat Biotechnol 26:417–426CrossRefGoogle Scholar
  154. Stavis SM, Edel JB, Samiee KT, Craighead HG (2005) Single molecule studies of quantum dot conjugates in a submicrometer fluidic channel. Lab Chip 5:337–343CrossRefGoogle Scholar
  155. Stefureac R, Waldner L, Howard P, Lee JS (2008) Nanopore analysis of a small 86-residue protein. Small 4:59–63CrossRefGoogle Scholar
  156. Stern E, Klemic JF, Routenberg DA, Wyrembak PN, Turner-Evans DB, Hamilton AD, LaVan DA, Fahmy TM, Reed MA (2007a) Label-free immunodetection with CMOS-compatible semiconducting nanowires. Nature 445:519–522CrossRefGoogle Scholar
  157. Stern E, Wagner R, Sigworth FJ, Breaker R, Fahmy TM, Reed MA (2007b) Importance of the debye screening length on nanowire field effect transistor sensors. Nano Lett 7:3405–3409CrossRefGoogle Scholar
  158. Stewart ME, Anderton CR, Thompson LB, Maria J, Gray SK, Rogers JA, Nuzzo RG (2008) Nanostructured plasmonic sensors. Chem Rev 108:494–521CrossRefGoogle Scholar
  159. Stiles PL, Dieringer JA, Shah NC, Duyne RPV (2008) Surface-enhanced Raman spectroscopy. Annu Rev Anal Chem 1:20.1–20.26CrossRefGoogle Scholar
  160. Storhoff JJ, Elghanian R, Mucic RC, Mirkin CA, Letsinger RL (1998) One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J Am Chem Soc 120:1959–1964CrossRefGoogle Scholar
  161. Sun J, Morgan M, Shen R-F, Steenbergen C, Murphy E (2007) Preconditioning results in S-nitrosylation of proteins involved in regulation of mitochondrial energetics and calcium transport. Circ Res 101:1155–1163CrossRefGoogle Scholar
  162. Suzuki M, Ozawa F, Sugimoto W, Aso S (2002) Miniature surface-plasmon resonance immunosensors- rapid and repetitive procedure. Anal Bioanal Chem 372:301–304CrossRefGoogle Scholar
  163. Tang D, Yuan R, Chai Y (2007) Magnetic control of an electrochemical microfluidic device with an arrayed immunosensor for simultaneous multiple immunoassays. Clin Chem 53:1323–1329CrossRefGoogle Scholar
  164. Tansil NC, Gao Z (2006) Nanoparticles in biomolecular detection. Nano Today 1:28–37CrossRefGoogle Scholar
  165. Taubenberger A, Cisneros DA, Friedrichs J, Puech PH, Muller DJ, Franz CM (2007) Revealing early steps of alpha(2)beta(1) integrin-mediated adhesion to collagen type I by using single-cell force spectroscopy. Mol Biol Cell 18:1634–1644CrossRefGoogle Scholar
  166. Turner APF (2000) Biochemistry—biosensors sense and sensitivity. Science 290:1315–1317CrossRefGoogle Scholar
  167. Valdes-Aguilera O, Neckers DC (1989) Aggregation phenomena in xanthene dyes. Acc Chem Res 22:171–177CrossRefGoogle Scholar
  168. Vestergaard M, Kerman K, Kim DK, Ha MH, Tamiya E (2008) Detection of Alzheimer’s tau protein using localised surface plasmon resonance-based immunochip. Talanta 74:1038–1042CrossRefGoogle Scholar
  169. Vo-Dinh T, Yan F, Wabuyle MB (2005) Surface-enhanced Raman scattering for medical diagnostics and biological imaging. J Raman Spectrosc 36:640–647CrossRefGoogle Scholar
  170. Wang WU, Chen C, Lin KH, Fang Y, Lieber CM (2005) Label-free detection of small-molecule-protein interactions by using nanowire nanosensors. Proc Natl Acad Sci USA 102:3208–3212CrossRefGoogle Scholar
  171. Wang AJ, Xu JJ, Zhang Q, Chen HY (2006a) The use of poly(dimethylsiloxane) surface modification with gold nanoparticles for the microchip electrophoresis. Talanta 69:210–215CrossRefGoogle Scholar
  172. Wang F, Tan WB, Zhang Y, Fan XP, Wang MQ (2006b) Luminescent nanomaterials for biological labelling. Nanotechnology 17:R1–R13CrossRefGoogle Scholar
  173. Wang Z, Gidwani V, Zhang DD, Wong PK (2008) Separation-free detection of nuclear factor kappa B with double-stranded molecular probes. Analyst 133:998–1000CrossRefGoogle Scholar
  174. Watkins J, Altazan JD, Elder P, Li CY, Nunez MT, Cui XX, Glass J (1992) Kinetic characterization of reductant dependent processes of iron mobilization from endocytic vesicles. J Biochem 31:5820–5830CrossRefGoogle Scholar
  175. Willets KA, Van Duyne RP (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58:267–297CrossRefGoogle Scholar
  176. Wu GH, Datar RH, Hansen KM, Thundat T, Cote RJ, Majumdar A (2001) Bioassay of prostate-specific antigen (PSA) using microcantilevers. Nat Biotechnol 19:856–860CrossRefGoogle Scholar
  177. Wunderlich BK, Neff PA, Bausch AR (2007) Mechanism and sensitivity of the intrinsic charge detection of biomolecular interactions by field effect devices. Appl Phys Lett 91:083904CrossRefGoogle Scholar
  178. Xia N, Hunt TP, Mayers BT, Alsberg E, Whitesides GM, Westervelt RM, Ingber DE (2006) Combined microfluidic-micromagnetic separation of living cells in continuous flow. Biomed Microdev 8:299–308CrossRefGoogle Scholar
  179. Yan Q, Chen A, Chua SJ, Zhao XS (2006) Nanosphere lithography from template-directed colloidal sphere assemblies. J Nanosci Nanotechnol 6:1815–1818CrossRefGoogle Scholar
  180. Yeh H-C, Simone E, Zhang C, Wang T-H (2004) Single bio-molecule detection with quantum dots in a microchannel. In: Micro electro mechanical systems, 2004. 17th IEEE International Conference on. (MEMS), pp 371–374Google Scholar
  181. Yeh HC, Ho YP, Shih IM, Wang TH (2006a) Homogeneous point mutation detection by quantum dot-mediated two-color fluorescence coincidence analysis. Nucl Acids Res 34Google Scholar
  182. Yeh HC, Puleo CM, Lim TC, Ho YP, Giza PE, Huang RCC, Wang TH (2006b) A microfluidic-FCS platform for investigation on the dissociation of Sp1-DNA complex by doxorubicin. Nucl Acids Res 34Google Scholar
  183. Yeung SW, Lee TMH, Cai H, Hsing IM (2006) A DNA biochip for on-the-spot multiplexed pathogen identification. Nucl Acids Res 34Google Scholar
  184. Yu SJ, Kang MW, Chang HC, Chen KM, Yu YC (2005) Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity. J Am Chem Soc 127:17604–17605CrossRefGoogle Scholar
  185. Yu X, Xu D, Cheng Q (2006) Label-free detection methods for protein microarrays. Proteomics 6:5493–5503CrossRefGoogle Scholar
  186. Yu KN, Lee SM, Han JY, Park H, Woo MA, Noh MS, Hwang SK, Kwon JT, Jin H, Kim YK, Hergenrother PJ, Jeong DH, Lee YS, Cho MH (2007) Multiplex targeting, tracking, and imaging of apoptosis by fluorescent surface enhanced Raman spectroscopic dots. Bioconjug Chem 18:1155–1162CrossRefGoogle Scholar
  187. Zhang CY, Yeh HC, Kuroki MT, Wang TH (2005) Single-quantum-dot-based DNA nanosensor. Nat Mater 4:826–831CrossRefGoogle Scholar
  188. Zhang J, Lang HP, Huber F, Bietsch A, Grange W, Certa U, McKendry R, Guntgerodt HJ, Hegner M, Gerber C (2006a) Rapid and label-free nanomechanical detection of biomarker transcripts in human RNA. Nat Nanotechnol 1:214–220CrossRefGoogle Scholar
  189. Zhang JG, Gao Y, Alvarez-Puebla RA, Buriak JM, Fenniri H (2006b) Synthesis and SERS properties of nanocristalline gold octahedra generated from thermal decomposition of HAuCl4 in block copolymers. Adv Mater 18:3233–3237CrossRefGoogle Scholar
  190. Zhang Q, Zhu L, Feng H, Ang S, Chau FS, Liu W-T (2006c) Microbial detection in microfluidic devices through dual staining of quantum dots-labeled immunoassay and RNA hybridization. Anal Chim Acta 556:171–177CrossRefGoogle Scholar
  191. Zhang G-J, Zhang G, Chua JH, Chee R-E, Wong EH, Agarwal A, Buddharaju KD, Singh N, Gao Z, Balasubramanian N (2008a) DNA sensing by silicon nanowire: charge layer distance dependence. Nano Lett 8:1066–1070CrossRefGoogle Scholar
  192. Zhang Q, Xu JJ, Liu Y, Chen HY (2008b) In situ synthesis of poly(dimethylsiloxane)-gold nanoparticles composite films and its application in microfluidic systems. Lab Chip 8:352–357CrossRefGoogle Scholar
  193. Zhang X, Yin H, Cooper JM, Haswell SJ (2008c) Characterization of cellular chemical dynamics using combined microfluidic and Raman techniques. Anal Bioanal Chem 390:833–840CrossRefGoogle Scholar
  194. Zhao J, Zhang X, Yonzon CR, Haes AJ, Van Duyne RP (2006) Localized surface plasmon resonance biosensors. Nanomed (Lond, Engl) 1:219–228CrossRefGoogle Scholar
  195. Zhao Q, Sigalov G, Dimitrov V, Dorvel B, Mirsaidov U, Sligar S, Aksimentiev A, Timp G (2007) Detecting SNPs using a synthetic nanopore. Nano Lett 7:1680–1685CrossRefGoogle Scholar
  196. Zheng G, Patolsky F, Cui Y, Wang WU, Lieber CM (2005) Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat Biotechnol 23:1294–1301CrossRefGoogle Scholar
  197. Zhou K, Kovarik ML, Jacobson SC (2008) Surface-charge induced ion depletion and sample stacking near single nanopores in microfluidic devices. J Am Chem Soc 130:8614–8616CrossRefGoogle Scholar
  198. Ziegler C (2004) Cantilever-based biosensors. Anal Bioanal Chem 379:946–959Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Jungkyu Kim
    • 1
  • Michael Junkin
    • 2
  • Deok-Ho Kim
    • 3
  • Seunglee Kwon
    • 4
  • Young Shik Shin
    • 5
  • Pak Kin Wong
    • 2
  • Bruce K. Gale
    • 1
    • 6
  1. 1.Department of BioengineeringUniversity of UtahSalt Lake CityUSA
  2. 2.Department of Aerospace and Mechanical EngineeringUniversity of ArizonaTucsonUSA
  3. 3.Department of Biomedical EngineeringJohns Hopkins UniversityBaltimoreUSA
  4. 4.Department of Biomedical EngineeringDrexel UniversityPhiladelphiaUSA
  5. 5.Department of BioengineeringCalifornia Institute of TechnologyPasadenaUSA
  6. 6.Department of Mechanical EngineeringUniversity of UtahSalt Lake CityUSA

Personalised recommendations