Experimental study of thermal conductivity and phase change performance of nanofluids PCMs

  • Yu-Dong Liu
  • Yue-Guo Zhou
  • Ming-Wei Tong
  • Xiao-San Zhou
Short Communication

Abstract

A new sort of nanofluids phase change materials (PCMs) is developed by suspending small amount of TiO2 nanoparticles in saturated BaCl2 aqueous solution. The resulting nanofluids PCMs possess remarkably high thermal conductivities compared to the base material. Cool storage/supply experiments conducted in a small apparatus have shown the excellent phase change performance of the nanofluids PCMs. The cool storage/supply rate and the cool storage/supply capacity all increase greatly those that of BaCl2 aqueous solution without added nanoparticles. The higher thermal performances of nanofluids PCMs indicate that they have a potential for substituting conventional PCMs in cool storage applications.

Keywords

Nanofluids Phase change material PCMs Thermal conductivity Cool storage 

Notes

Acknowledgments

This work was supported financially by the Natural Science Foundation of Chongqing (Chongqing, China), as well as by the Doctoral Startup Foundation of Chongqing University (Chongqing, China).

References

  1. Bauer C, Wirtz R (2000) Thermal characteristics of a compact, passive thermal energy storage device. In: Proceedings of the 2000 ASME IMECE, Orlando, USAGoogle Scholar
  2. Chopkar M, Das PK, Manna I (2006) Synthesis and characterization of nanofluid for advanced heat transfer applications. Scr Mater 55:549–552CrossRefGoogle Scholar
  3. Das SK, Putra N, Thiesen P, Roetzel W (2003) Temperature dependence of thermal conductivity enhancement for nanofluids. J Heat Transfer 125:567–574CrossRefGoogle Scholar
  4. Domingues G, Volz S, Joulain K, Greffet JJ (2005) Heat transfer between two nanoparticles through near field interaction. Phys Rev Lett 94:085901CrossRefGoogle Scholar
  5. Eastman JA, Choi SUS, Li S, Yu W, Thompson LJ (2001) Anomalously increased effective thermal conductivity of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett 78:718–720CrossRefGoogle Scholar
  6. Frusteri F, Leonardi V, Vasta S, Restuccia G (2005) Thermal conductivity measurement of a PCM based storage system containing carbon fibers. Appl Therm Eng 25:1623–1633CrossRefGoogle Scholar
  7. Hamada Y, Otsu W, Fukai J, Morozumi Y, Miyatake O (2005) Anisotropic heat transfer in composites based on high-thermal conductive carbon fibers. Energy 30:221–233CrossRefGoogle Scholar
  8. Hawlader MNA, Uddin MS, Khin MM (2003) Microencapsulated PCM thermal-energy storage system. Appl Energy 74:195–202CrossRefGoogle Scholar
  9. Hong T-K, Yang H-S, Choi CJ (2005) Study of the enhanced thermal conductivity of Fe nanofluids. J Appl Phys 97(6):1–4Google Scholar
  10. Hwang Y-J, Ahn Y-C, Shin H-S, Lee C-G, Kim G-T, Park H-S, Lee J-K (2005) Investigation on characteristics of thermal conductivity enhancement of nanofluids. Curr Appl Phys 6(6):1068-1071CrossRefGoogle Scholar
  11. Inaba H (2000) New challenge in advanced thermal energy transportation using functionally thermal fluids. Int J Therm 39:991–1003CrossRefGoogle Scholar
  12. Jang SP, Choi SUS (2004) Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl Phys Lett 84(21):4316–4318CrossRefGoogle Scholar
  13. Ju S, Li ZY (2006) Theory of thermal conductance in carbon nanotube composites. Phys Lett A 353:194–197CrossRefMathSciNetGoogle Scholar
  14. Jwo CS, Teng TP, Hung CJ et al (2005) Research and development of measurement device for thermal conductivity of nanofluids. J Phys 13:55–58Google Scholar
  15. Keblinski P, Phillpot SR, Choi SUS, Eastman JA (2002) Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int J Heat Mass Transfer 45(4):855–863MATHCrossRefGoogle Scholar
  16. Kim DH, Ryu HW, Moon JH, Kim J (2006) Effect of ultrasonic treatment and temperature on nanocrystalline TiO2. J Power Source 1:196–200Google Scholar
  17. Lane GA (1980) Low temperature heat storage with phase change materials. Int J Ambient Energy 1:155–168MathSciNetGoogle Scholar
  18. Lee S, Choi SUS, Li S, Eastman JA (1999) Measuring thermal conductivity of fluids containing oxide nanoparticles. J Heat Transfer 121:280–289CrossRefGoogle Scholar
  19. Li Q, Xuan YM (2002) Convective heat transfer and flow characteristics of Cu-water nanofluid. Sci China 45E:408–416Google Scholar
  20. Marin JM, Zalba B, Cabeza LF, Mehling H (2005) Improvement of a thermal energy storage using plates with paraffin-graphite composite. Int J Heat Mass Transfer 48:2561–2570CrossRefGoogle Scholar
  21. Maxwell JC (1881) A treatise on electricity and magnetism, vol 1, 2nd edn. Clarendon Press, OxfordGoogle Scholar
  22. Nan CW, Liu G, Lin Y, Li M (2004) Interface effect on thermal conductivity of carbon nanotube composites. Appl Phys Lett 85:3549–3551CrossRefGoogle Scholar
  23. Patel HE, Das SK, Sundararajan T, Sreekumaran NA, George B, Pradeep T (2003) Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: manifestation of anomalous enhancement and chemical effects. Appl Phys Lett 83(14):2931–2933CrossRefGoogle Scholar
  24. Ryu HW, Woo SW, Shin BC, Kim SD (1992) Prevention of supercooling and stabilization of inorganic salt hydrates as latent heat storage materials. Solar Energy Mater Solar Cells 27:161–172CrossRefGoogle Scholar
  25. Wang X, Xu X, Choi SUS (1999) Thermal conductivity of nanoparticle–fluid mixture. J Thermophys Heat Transfer 13(4):474–480CrossRefGoogle Scholar
  26. Wang BX, Zhou LP, Peng XF (2003) A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles. Int J Heat Mass Transfer 46:2665–2672MATHCrossRefGoogle Scholar
  27. Xiao M, Feng B, Gong K (2002) Preparation and performance of shape stabilized phase change thermal storage materials with high thermal conductivity. Energy Convers Manage 43:103–108CrossRefGoogle Scholar
  28. Xuan YM, Li Q, Hu W (2003) Aggregation structure and thermal conductivity of nanofluids. AIChE J 49:1038–1043CrossRefGoogle Scholar
  29. Xue QZ (2003) Model for effective thermal conductivity of nanofluids. Phys Lett A 307:313–317CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Yu-Dong Liu
    • 1
  • Yue-Guo Zhou
    • 1
  • Ming-Wei Tong
    • 1
  • Xiao-San Zhou
    • 1
  1. 1.College of Power EngineeringChongqing UniversityChongqingPeople’s Republic of China

Personalised recommendations