Advertisement

Micro-injection moulding of polymer microfluidic devices

  • Usama M. AttiaEmail author
  • Silvia Marson
  • Jeffrey R. Alcock
Review

Abstract

Microfluidic devices have several applications in different fields, such as chemistry, medicine and biotechnology. Many research activities are currently investigating the manufacturing of integrated microfluidic devices on a mass-production scale with relatively low costs. This is especially important for applications where disposable devices are used for medical analysis. Micromoulding of thermoplastic polymers is a developing process with great potential for producing low-cost microfluidic devices. Among different micromoulding techniques, micro-injection moulding is one of the most promising processes suitable for manufacturing polymeric disposable microfluidic devices. This review paper aims at presenting the main significant developments that have been achieved in different aspects of micro-injection moulding of microfluidic devices. Aspects covered include device design, machine capabilities, mould manufacturing, material selection and process parameters. Problems, challenges and potential areas for research are highlighted.

Keywords

Micro-injection moulding Microfluidics Polymers Polymer processing 

References

  1. Abbott Laboratories (2009) i-STAT. Available at http://www.abbottpointofcare.com/istat. Accessed 2009
  2. Angelov A, Coulter J (2004) Micromolding product manufacture—a progress report. In: Proceedings of the annual technical conference (ANTEC 2004), Chicago, IL, 16–20 May 2004Google Scholar
  3. Angelov A, Coulter J (2007) A feasibility study for sub-100 nm polymer injection molding. In: Proceedings of the annual technical conference (ANTEC 2007), 6–11 May 2007Google Scholar
  4. Angelov A, Coulter J (2008) The development and characterization of polymer microinjection molded gratings. Polym Eng Sci 48(11):2169–2177CrossRefGoogle Scholar
  5. Aufiero R (2005) The effect of process conditions on part quality in microinjection molding. In: Proceedings of the annual technical conference (ANTEC 2005), Boston, MA, 1–5 May 2005Google Scholar
  6. Bartels Mikrotechnik GmbH (2009) Available at http://www.bartels-mikrotechnik.de. Accessed 2009
  7. Becker H (2008) Microfluidics: a technology coming of age. Med Device Technol 19:21–24Google Scholar
  8. Becker H, Gärtner C (2000) Polymer microfabrication methods for microfluidic analytical applications. Electrophoresis 21(1):12–26CrossRefGoogle Scholar
  9. Becker H, Heim U (1999) Hot embossing as a method for the fabrication of polymer high aspect ratio structures. Sens Actuators A Phys 83(1):130–135CrossRefGoogle Scholar
  10. Becker H, Locascio L (2002) Polymer microfluidic devices. Talanta 56(2):267–287CrossRefGoogle Scholar
  11. Bibber D (2004) Micro molding challenges. In: Proceedings of the annual technical conference (ANTEC 2004), Chicago, IL, 16–20 May 2004Google Scholar
  12. Bibber D (2005) Advanced micromolding applications. In: Proceedings of the annual technical conference (ANTEC 2005), Boston, MA, 1–5 May 2005Google Scholar
  13. Bissacco G, Hansen H, Tang T, Fugl J (2005) Precision manufacturing methods of inserts for injection molding of microfluidic systems. ASPE spring topical meeting on precision micro/nano scale polymer based component and device fabrication, April 2005Google Scholar
  14. Blattert C, Jurischka R, Schoth A, Kerth P Menz W (2004) Fabrication and testing of novel blood separation devices based on microchannel bend structures. Progress in biomedical optics and imaging. In: Proceedings of SPIE, Sydney, NSW, 13–15 December 2004Google Scholar
  15. Boone T, HughFan Z, Hooper H, Ricco A, Tan H, Williams S (2002) Plastic advances microfluidic devices. Anal Chem 74(3)Google Scholar
  16. Bourdon R (2003) Short cycles for injection moulded microfluidics parts. Kunsts Plast Eur 93(9): 9, 11+33Google Scholar
  17. Bourdon R, Schneider W (2002) A systematic approach to microinjection moulding. Business briefing: medical device manufacturing and technology 1–3Google Scholar
  18. Catanzaro J, Kadykowski B (2002) Micro molding—“a new way”. In: Proceedings of the annual technical conference (ANTEC 2002), 3:2627–2633Google Scholar
  19. Chang P, Hwang S, Lee H, Huang D (2007) Development of an external-type microinjection molding module for thermoplastic polymer. J Mater Process Technol 4/12; 184(1–3):163–172Google Scholar
  20. Chen S, Chang J, Chang Y, Chau S (2005) Micro injection molding of micro fluidic platform. In: Proceedings of the annual technical conference (ANTEC 2005), 1–5 May 2005Google Scholar
  21. Clay J, Heggs R (2002) Material challenges in medical micromolding applications. In: Proceedings of the annual technical conference (ANTEC 2002), 5–9 May 2002Google Scholar
  22. De Mello A (2002) Plastic fantastic? Lab Chip Miniatuarisation Chem Biol 2(2):31N–36NCrossRefGoogle Scholar
  23. Derdouri A, Ilinca F, Hétu J (2005) Microinjection molding of microstructures—experimental and numerical simulation. In: AIChE annual meeting, conference proceedings, Cincinnati, OH, 30 October–4 November 2005Google Scholar
  24. Despa M, Kelly K, Collier J (1998) Injection molding using high aspect ratio microstructures mold inserts produced by LIGA technique. In: Proceedings of SPIE—the international society for optical engineering, Santa Clara, CA, USA, 21–22 September 1998Google Scholar
  25. Erickson D, Li D (2004) Integrated microfluidic devices. Anal Chim Acta 507(1):11–26CrossRefGoogle Scholar
  26. Fassett J (1995) Thin wall molding: differences in processing over standard injection molding. In: Proceedings of the annual technical conference (ANTEC 1995), Boston, MA, USA, 7 May–11 October 1995Google Scholar
  27. Fiorini GS, Chiu DT (2005) Disposable microfluidic devices: fabrication, function, and application. Biotechniques 38:429–446CrossRefGoogle Scholar
  28. Gadegaard N, Mosler S, Larsen NB (2003) Biomimetic polymer nanostructures by injection molding. Macromol Mater Eng 288(1):76–83CrossRefGoogle Scholar
  29. Gerlach A, Knebel G, Guber AE, Heckele M, Herrmann D, Muslija A et al (2002) Microfabrication of single-use plastic microfluidic devices for high-throughput screening and DNA analysis. Microsyst Technol 7(5–6):265–268CrossRefGoogle Scholar
  30. Giboz J, Copponnex T, Mélé P (2007) Microinjection molding of thermoplastic polymers: a review. J Micromech Microeng 17(6):R96–R109CrossRefGoogle Scholar
  31. Gottschlich N (2004) Production of plastic components for microfluidic applications. Business briefing: future drug discovery, 2004. http://www.touchbriefings.com/pdf/855/fdd041_greiner_tech.pdf. Accessed 2007
  32. Grande JA (2006) Micro-thermoforming makes its debut. Plast Technol 52(11):37–41Google Scholar
  33. Greener J, Wimberger-Friedl R (2006) Precision injection molding: process, materials, and applications. Hanser Gardner Publications, CincinnatiGoogle Scholar
  34. Greenway G, Allan P, Bevis M, Hornsby P (2001) The mechanical testing of micro injection mouldings. In: Proceedings of the annual technical conference (ANTEC 2001), 5–9 May 2001Google Scholar
  35. Greenway G, Allan P, Hornsby P (2003) The characterisation and physical testing of micro-mouldings. In: Proceedings of the annual technical conference (ANTEC 2003), Nashville, TN, 4–8 May 2003Google Scholar
  36. Griffiths C, Dimov S, Brousseau E, Hoyle R (2007) The effects of tool surface quality in micro-injection moulding. J Mater Process Technol 189(1–3):418–427Google Scholar
  37. Griffiths C, Dimov S, Brousseau E, Chouquet C, Gavillet J, Bigot S (2008) Micro-injection moulding: surface treatment effects on part demoulding. In: 4M2008 proceedings. Whittles Publishing, UK, 9–11 SeptemberGoogle Scholar
  38. Hanemann T, Pfleging W, Haußelt J, Zum K (2002) Laser micromaching and light induced reaction injection molding as suitable process sequence for the rapid fabrication of microcomponents. Microsyst Technol 7(5):209–214CrossRefGoogle Scholar
  39. Heckele M, Schomburg W (2004) Review on micro molding of thermoplastic polymers. J Micromech Microeng 14(3)Google Scholar
  40. Heckele M, Guber A, Truckenmüller R (2006) Replication and bonding techniques for integrated microfluidic systems. Microsyst Technol 12(10–11):1031–1035CrossRefGoogle Scholar
  41. Hill S, Kämper K, Dasbach U, Döpper J, Ehrfeld W, Kaupert M (1995) An investigation of computer modelling for micro-injection moulding. In: Proceedings of microsym’95, September 1995Google Scholar
  42. Hörr M (1997) Grundlagenuntersuchungen durch Strukturdefinition beim Mikrospritzgießen im Rahmen des LIGA-Prozesses. Fachhochschule Darmstadt, DarmstadtGoogle Scholar
  43. Ilinca F, Hétu J-F, Derdouri A (2004) Numerical simulation of the filling stage in the micro-injection molding process. In: Proceedings of the annual technical conference (ANTEC 2004), Chicago, IL, 16–20 May 2004Google Scholar
  44. Jung J, Choi G, Kim D (2004) Experimental study on spray etching process in micro fabrication of lead frame. KSME Int J 18(12):2294–2302Google Scholar
  45. Kalima V, Pietarinen J, Siitonen S, Immonen J, Suvanto M, Kuittinen M et al (2007) Transparent thermoplastics: replication of diffractive optical elements using micro-injection molding. Opt Mater 30(2):285–291CrossRefGoogle Scholar
  46. Kelly A, Woodhead M, Coates P (2005) Comparison of injection molding machine performance. Polym Eng Sci 45(6):857–865CrossRefGoogle Scholar
  47. Kemmann O, Schaumburg C, Weber L (1999) Micro moulding behaviour of engineering plastics. In: Proceedings of SPIE—the international society for optical engineering, Bellingham, WA, USA, pp 464–471, 30 March–1 April 1999Google Scholar
  48. Kemmann O, Weber L, Jeggy C, Magotte O (2000) Simulation of the micro injection molding process. In: Proceedings of the annual technical conference (ANTEC 2000), pp 576–580Google Scholar
  49. Kim S, Trichur R, Beaucage G, Ahn C, Kim B (2002) New plastic microinjection molding technique for extremely tall plastic structures using remote infrared radiation heating method. In: Proceedings of the 10th solid-state sensor, actuator and microsystems workshop, 2–6 June, 2002Google Scholar
  50. Kim D, Lee S, Ahn C, Lee J, Kwon T (2006) Disposable integrated microfluidic biochip for blood typing by plastic microinjection moulding. Lab Chip Miniaturisation Chem Biol 6(6):794–802CrossRefGoogle Scholar
  51. Kirkland C (2003) A first in micromold flow analysis. Injection Molding MagGoogle Scholar
  52. Kistler Instrument Corporation (2007) http://www.kistler.com. Accessed 27 Feb 2007
  53. Klepárník K, Horký M (2003) Detection of DNA fragmentation in a single apoptotic cardiomyocyte by electrophoresis on a microfluidic device. Electrophoresis 24(2):3778–3783CrossRefGoogle Scholar
  54. Kukla C, Loibl H, Detter H, Hannenheim W (1998) Micro-injection moulding—the aims of a project partnership. Kunsts Plast Eur 88(9):6–7Google Scholar
  55. Lee B, Hwang C, Kim D, Kwon T (2008a) Replication quality of flow-through microfilters in microfluidic lab-on-a-chip for blood typing by microinjection molding. J Manuf Sci Eng Trans ASME 130(2):0210101–0210108Google Scholar
  56. Lee S, Kim S, Kang J, Ahn C (2008b) A polymer lab-on-a-chip for reverse transcription (RT)-PCR based point-of-care clinical diagnostics. Lab Chip Miniaturisation Chem Biol 8(12):2121–2127CrossRefGoogle Scholar
  57. Liou A, Chen R (2006) Injection molding of polymer micro- and sub-micron structures with high-aspect ratios. Int J Adv Manuf Technol 28(11–12):1097–1103CrossRefGoogle Scholar
  58. Little G, Tuttle R, Clark D, Corney J (1998) A feature complexity index. Proc Inst Mech Eng C J Mech Eng Sci 212(5):405–412CrossRefGoogle Scholar
  59. Liu M-K, Huang K-S, Chang J-Y, Wu C-H, Lin Y-C (2007) Using a CD-like microfluidic platform for uniform calcium alginate drug carrier generation. In: Proceedings of SPIE—the international society for optical engineering, San Jose, CA, 22–24 January 2007Google Scholar
  60. Macintyre D, Thoms S (1998) The fabrication of high resolution features by mould injection. Microelectron Eng 41–42:211–214CrossRefGoogle Scholar
  61. Madou M, Lee L, Koelling K, Lai S, Koh C, Juang Y, et al (2001) Design and fabrication of polymer microfluidic platforms for biomedical applications. In: Proceedings of the annual technical conference (ANTEC 2001), vol 3, pp 2534–2538Google Scholar
  62. Mair D, Geiger E, Pisano A, Fréchet J, Svec F (2006) Injection molded microfluidic chips featuring integrated interconnects. Lab Chip Miniaturisation Chem Biol 6(10):1346–1354CrossRefGoogle Scholar
  63. Majmundar R, Asthana A, Ghumman B, Barry C (2005) Comparison of predicted and experimental filling of micromolded parts. In: Proceedings of the annual technical conference (ANTEC 2005), Boston, MA, pp 1–5 May 2005Google Scholar
  64. Martyn M, Whiteside B, Coates P, Allan P, Hornsby P (2001) Studies of the process–property interaction of the micromoulding process. In: Proceedings of the annual technical conference (ANTEC 2001), Brookfield Center, CT, USA, 5–9 May 2001Google Scholar
  65. Martyn M, Whiteside B, Coates P, Allan P, Greenway G, Hornsby P (2003) Micromoulding: consideration of processing effects on medical materials. In: Proceedings of the annual technical conference (ANTEC 2003), Nashville, TN, 4–8 May 2003Google Scholar
  66. Martyn M, Whiteside B, Coates, P, Allan P, Greenway G, Hornsby P (2004) Aspects of micromoulding polymers for medical applications. In: Proceedings of the annual technical conference (ANTEC 2004), Chicago, IL, 16–20 May 2004Google Scholar
  67. Mazzeo A, Dirckx M, Hardt D (2007) Process selection for microfluidic device manufacturing. In: Proceedings of the annual technical conference (ANTEC 2007), 6–11 May 2007Google Scholar
  68. Mehta N, Barry C, Bibber D, Tully D (2003) Validation of flow simulation for micromolded parts. In: Proceedings of the annual technical conference (ANTEC 2003), 4–8 May 2003, Nashville, TNGoogle Scholar
  69. Micralyne Inc (2009) Available at http://www.micralyne.com. Accessed 2009
  70. Microfluidic ChipShop GmbH (2009) Lab-on-a-Chip Catalogue 01/2009. Available at http://www.microfluidic-chipshop.com. Accessed 2009
  71. Michaeli W, Gärtner R (2006) New demolding concepts for the injection molding of microstructures. J Polym Eng 26(2–4):161–177Google Scholar
  72. Michaeli W, Opfermann D (2005) Bonding strength in micro injection assembly moulding. In: Proceedings of the annual technical conference (ANTEC 2005), 1–5 May 2005, Boston, MAGoogle Scholar
  73. Michaeli W, Opfermann D (2006a) Micro assembly injection moulding. Microsyst Technol 12(7):616–619CrossRefGoogle Scholar
  74. Michaeli W, Opfermann D (2006) Increasing the feasible bonding strength in micro assembly injection molding using surface modifications. In: Proceedings of the annual technical conference (ANTEC 2006), 7–11 May 2006, Charlotte, NCGoogle Scholar
  75. Michaeli W, Spennemann A (2001) A new injection molding technology for micro parts. J Polym Eng 21(2–3):87–98Google Scholar
  76. Michaeli W, Ziegmann C (2003) Micro assembly injection moulding for the generation of hybrid microstructures. Microsyst Technol 9(6–7):427–430CrossRefGoogle Scholar
  77. Michaeli W, Rogalla A, Ziegmann C (2000) Processing technologies for the injection moulding of hybrid microstructures. Macromol Mater Eng 279:42–45CrossRefGoogle Scholar
  78. Michaeli W, Spennemann A, Gärtner R (2002) New plastification concepts for micro injection moulding. Microsyst Technol 8(1):55–57CrossRefGoogle Scholar
  79. Miller T, Fontaine J (1999) Performance and materials for high performing injection molded optical elements. In: Proceedings of the conference on plastic portable wireless electron 1999, Brookfield, CT, USA, 25–26 January 1999, pp 37–42Google Scholar
  80. Mönkkönen K, Hietala J, Pääkkönen P, Pääkkönen E, Kaikuranta T, Pakkanen T et al (2002) Replication of sub-micron features using amorphous thermoplastics. Polym Eng Sci 42(7):1600–1608CrossRefGoogle Scholar
  81. Morales A, Simmons B, Wallow T, Campbell K, Mani S, Mittal B, et al (2006) Injection molded microfluidic devices for biological sample separation and detection. In: Proceedings of SPIE—the international society for optical engineering, San Jose, CA, 25–25 January 2006Google Scholar
  82. Murakami O, Yamada K, Kotaki M (2007) Replication and optical properties of injection moldings with microstructures. In: Proceedings of the annual technical conference (ANTEC 2007), 6–11 MayGoogle Scholar
  83. Niggemann M, Ehrfeld W, Weber L (1998) Fabrication of miniaturized biotechnical devices. In: Proceedings of SPIE—the international society for optical engineering, Santa Clara, CA, 21–22 September 1998Google Scholar
  84. Noerholm M, Bruus H, Jakobsen MH, Telleman P, Ramsing NB (2004) Polymer microfluidic chip for online monitoring of microarray hybridizations. Lab Chip Miniaturisation Chem Biol 4(1):28–37CrossRefGoogle Scholar
  85. Norajitra P, Muller K, Ruprecht R, Haußelt J (1996) Computersimulation zur Verbesserung der Wirtschaftlichkeit beim Spritzgießen von Kunststoffmikrostrukturen. In: Proceedings of Werkstoffwoche 1996, Symposium 8, DGM-Informationsgesellschaft VerlagGoogle Scholar
  86. Ong N, Zhang H, Woo W (2006) Plastic injection molding of high-aspect ratio micro-rods. Mater Manuf Process 21(8):824–831CrossRefGoogle Scholar
  87. Ono Y, Cheng C, Jen C, Tatibouët J, Hétu J (2005) Ultrasonic technique and probes for monitoring surface imperfection of microfluidic plastic devices during injection molding. In: Proceedings of the annual technical conference (ANTEC 2005), Boston, MA, 1–5 May 2005Google Scholar
  88. Piotter V, Hanemann T, Ruprecht R, Haußelt J (2002a) Microinjection moulding of medical device components. Business briefing: medical device manufacturing and technology 2002, pp 63–66Google Scholar
  89. Piotter V, Mueller K, Plewa K, Ruprecht R, Haußelt J (2002b) Performance and simulation of thermoplastic micro injection molding. Microsyst Technol 8(6):387–390CrossRefGoogle Scholar
  90. Piotter V, Guber AE, Heckele M, Gerlach A (2004) Micro moulding of medical device components. Business briefing: medical device manufacturing and technology, 2004, http://www.touchbriefings.com/pdf/954/piotter.pdf. Accessed Feb 2007
  91. Piotter V, Finnah G, Oerlygsson G, Ruprecht R, Haußelt J (2005) Special variants and simulation of micro injection moulding. Injection moulding 2005. Collected papers of the 5th international conference, Copenhagen, Denmark, 1–2 March 2005Google Scholar
  92. Pirskanen J, Immonen J, Kalima V, Pietarinen J, Siitonen S, Kuittinen M et al (2005) Replication of sub-micrometre features using microsystems technology. Plast Rubber Compos 34(5–6):222–226CrossRefGoogle Scholar
  93. Pranov H, Rasmussen H, Larsen N, Gadegaard N (2006) On the injection molding of nanostructured polymer surfaces. Polym Eng Sci 46(2):160–171CrossRefGoogle Scholar
  94. Raviwongse R, Allada V (1997) Artificial neural network based model for computation of injection mould complexity. Int J Adv Manuf Technol 13(8):577–586CrossRefGoogle Scholar
  95. Reyes D, Iossifidis D, Auroux P, Manz A (2002) Micro total analysis systems. 1 Introduction, theory, and technology. Anal Chem 74(1):2623–2636CrossRefGoogle Scholar
  96. Rosen D, Dixon J, Poli C, Dong X (1992) Features and algorithms for tooling cost evaluation in injection molding and die casting. In: Proceedings of the ASME international computers in engineering conference and exposition, New York, NY, USA, 2–6 August 1992. ASME, New YorkGoogle Scholar
  97. Rötting O, Röpke W, Becker H, Gärtner C (2002) Polymer microfabrication technologies. Microsyst Technol 8(1):32–36CrossRefGoogle Scholar
  98. Ruprecht R, Bacher W, Haußelt J, Piotter V (1995) Injection molding of liga and liga-similar microstructures using filled and unfilled thermoplastics. In: Proceedings of SPIE—the international society for optical engineering, Austin, TX, 23–24 October 1995Google Scholar
  99. Ruprecht R, Hanemann T, Piotter V, Haußelt J (1998) Polymer materials for microsystem technologies. Microsyst Technol 5(1):44–48CrossRefGoogle Scholar
  100. Sammoura F, Kang J, Heo Y, Jung T, Lin L (2007) Polymeric microneedle fabrication using a microinjection molding technique. Microsyst Technol 13(5–6):517–522CrossRefGoogle Scholar
  101. Schneider C, Maier G (2001) Small, but potent: special plastics for injection moulding microparts. Kunsts Plast Eur 91(3):27–28Google Scholar
  102. Sha B, Dimov S, Griffiths C, Packianather M (2006) Micro-injection moulding: factors affecting the achievable aspect ratios. Int J Adv Manuf TechnolGoogle Scholar
  103. Sha B, Dimov S, Griffiths C, Packianather M (2007a) Investigation of micro-injection moulding: factors affecting the replication quality. J Mater Process Technol 183(2–3):284–296CrossRefGoogle Scholar
  104. Sha B, Dimov S, Griffiths C, Packianather M (2007b) Micro-injection moulding: factors affecting the achievable aspect ratios. Int J Adv Manuf Technol 33(1–2):147–156CrossRefGoogle Scholar
  105. Shen YK, Wu WY (2002) An analysis of the three-dimensional micro-injection molding. Int Commun Heat Mass Transf 29(3):423–431CrossRefGoogle Scholar
  106. Shen Y, Yeh S, Chen S (2002) Three-dimensional non-Newtonian computations of micro-injection molding with the finite element method. Int Commun Heat Mass Transf 29(5):643–652CrossRefGoogle Scholar
  107. Shen Y, Chien H, Lin Y (2004) Optimization of the micro-injection molding process using grey relational analysis and moldflow analysis. J Reinf Plast Compos 23(17):1799–1814CrossRefGoogle Scholar
  108. Shepard T, Dunn D (1995) Micro-injection molding of medical products: machine specification and process simulation. In: Proceedings of the annual technical conference (ANTEC 1995)Google Scholar
  109. SMS Group (2006) Battenfeld Service Manual, Version MB4GBV20 10 March 2006Google Scholar
  110. Song S, Lee KY (2006) Polymers for microfluidic chips. Macromol Res 14(2):121–128Google Scholar
  111. Soper SA, Ford S, Qi S, McCarley R, Kelly K, Murphy M (2000) Polymeric microelectromechanical systems. Anal Chem 72(19)Google Scholar
  112. Soper S, Henry A, Vaidya B, Galloway M, Wabuyele M, McCarley R (2002) Surface modification of polymer-based microfluidic devices. Anal Chim Acta 470(1):87–99. 10/11Google Scholar
  113. Spennemann A, Michaeli W (1999) Process analysis and machine technology for the injection molding of microstructures. In: Proceedings of the annual technical conference (ANTEC 1999), 2–6 MayGoogle Scholar
  114. Stange T (2002) Development and production of microfluidic chips made of polymers. Am Biotechnol Lab 20(8):8–10Google Scholar
  115. Stewart R (2006) Nanomaterials: still climbing the steep curve of material development. Plastics Eng 12–20Google Scholar
  116. Strassner J (2004) Precision as a competitive edge. Demagpress, 3–4Google Scholar
  117. Sung W, Lee G, Tzeng C, Chen S (2001) Plastic microchip electrophoresis for genetic screening: the analysis of polymerase chain reactions products of fragile X (CGG)n alleles. Electrophoresis 22:1188–1193CrossRefGoogle Scholar
  118. Tahhan I, Blattert C, Jurischka R, Schoth A, Kerth P, Reinecke H (2005) Improved and simple sealing of microfluidic structures. In: 2005 3rd IEEE/EMBS special topic conference on microtechnology in medicine and biology, 12–15 May 2005Google Scholar
  119. ThinXXS Microtechnology AG (2009) Available at http://www.thinxxs.com. Accessed 2009
  120. Tipler P, Manser P (2001) Developments in micromoulding. In: Proceedings of polymer processing engineering 01, Bradford, UK, June 2001Google Scholar
  121. Tolinski M (2005) Macro challenges in micromolding. Plast Eng 61(9):14–16Google Scholar
  122. Tom A, Layser G, Coulter J (2006) Mechanical property determination of micro injection molded tensile test specimens. In: Proceedings of the annual technical conference (ANTEC 2006), Charlotte, NC, 7–11 May 2006Google Scholar
  123. Tosello G, Fillon B, Azcarate S, Schoth A, Mattsson L, Griffiths C, Staemmler L, Bolt P (2007) Hybrid tooling technologies and standardization for the manufacturing of inserts for micro injection molding. In: Proceedings of the annual technical conference (ANTEC 2007), 6–11 May 2007Google Scholar
  124. Tosello G, Gava A, Hansen H, Lucchetta G (2007) Influence of process parameters on the weld lines of a micro injection molded component. In: Proceedings of the annual technical conference (ANTEC 2007), 6–11 May 2007Google Scholar
  125. Wang Y-D, Chang P-Q, Wu Y-F, Hwang S-J, Hwang, D-Y, Cheng R-W (2005) Design and fabrication of an all-electric tiebarless injection molding machine. In: 2005 IEEE international conference on mechatronics, ICM ’05, 10–12 July 2005Google Scholar
  126. Weber L, Ehrfeld W (1998) Molding of microstructures for high-tech applications. In: Proceedings of the 56th annual technical conference (ANTEC 1998). Part 3 (of 3), Atlanta, GA, USA, 26–30 April 1998Google Scholar
  127. Weber L, Ehrfeld W (1998) Micro-moulding—processes, moulds, applications. Kunsts Plast Eur 1998, 88, pp 60–63, 10 Munich, GermanyGoogle Scholar
  128. Weber L, Ehrfeld W (1999) Micromoulding: market position and development potential. Kunststoffe 89(10):192–202Google Scholar
  129. Weber L, Ehrfeld W, Freimuth H, Lacher M, Lehr H, Pech B (1996) Micromolding: a powerful tool for large-scale production of precise microstructures. In: Proceedings of SPIE—the international society for optical engineering, Austin, TX, USA, 14–15 October 1996Google Scholar
  130. Whiteside B, Martyn M, Coates P, Allan P, Hornsby P, Greenway G (2003) Micromoulding: process characteristics and product properties. Plast Rubber Compos 32(6):231–239CrossRefGoogle Scholar
  131. Whiteside B, Martyn M, Coates P (2004) Micromoulding: process evaluation. In: Proceedings of the annual technical conference (ANTEC 2004) Chicago, IL, 16–20 May 2004Google Scholar
  132. Whiteside B, Martyn M, Coates P, Greenway G, Allen P, Hornsby P (2004b) Micromoulding: process measurements, product morphology and properties. Plast Rubber Compos 33(1):11–17CrossRefGoogle Scholar
  133. Whiteside B, Brown E, Ono Y, Jen C, Coates P (2005) Polymer degradation and filling incompletion monitoring for micromolding using ultrasound. In: Proceedings of the annual technical conference (ANTEC 2005) Boston, MA, 1–5 May 2005Google Scholar
  134. Whitesides G (2006) The origins and the future of microfluidics. Nature 442(7101):368–373CrossRefGoogle Scholar
  135. Wimberger-Friedl R (2000) Injection molding of sub-μm grating optical elements. J Inject Molding Technol 4(2):78–83Google Scholar
  136. Wimberger-Friedl R, Balemans W, Van Iersel B (2003) Molding of microstructures and high aspect ratio features. In: Proceedings of the annual technical conference (ANTEC 2003), Nashville, TN, 4–8 May 2003Google Scholar
  137. Xu G, Kim D, Koelling K, Lee L (2005) Flow dynamics in injection molding with microfeatures. In: Proceedings of the annual technical conference (ANTEC 2005), Boston, MA, 1–5 May 2005Google Scholar
  138. Yao D, Kim B (2002a) Injection molding high aspect ratio microfeatures. J Inject Molding Technol 6(1):11–17Google Scholar
  139. Yao D, Kim B (2002b) Simulation of the filling process in micro channels for polymeric materials. J Micromech Microeng 12(5):604–610CrossRefGoogle Scholar
  140. Yoon S-H, Alabran M, Lee J, Mead J, Barry C, Carter D (2007) Micro-injection molding of high aspect ratio features with thermoplastic polyurethanes. In: Proceedings of the annual technical conference (ANTEC 2007), 6–11 May 2007Google Scholar
  141. Young W (2005) Simulation of the filling process in molding components with micro channels. Microsyst Technol 11(6):410–415CrossRefGoogle Scholar
  142. Yu L, Koh C, Lee L, Koelling K, Madou M (2002) Experimental investigation and numerical simulation of injection molding with micro-features. Polym Eng Sci 42(5):871–888CrossRefGoogle Scholar
  143. Yu L, Lee L, Koelling K (2004) Flow and heat transfer simulation of injection molding with microstructures. Polym Eng Sci 44(10):1866–1876CrossRefGoogle Scholar
  144. Yussuf A, Sbarski I, Hayes J, Solomon M (2007) Sealing and bonding techniques for polymer-based microfluidic devices. Swinburne University of Technology, http://www.swin.edu.au/iris/pdf/profiles/AbdirahmanYussuf.pdf. Accessed March 2007
  145. Zhang K, Lu Z (2008) Analysis of morphology and performance of PP microstructures manufactured by micro injection molding. Microsyst Technol 14(2):209–214CrossRefGoogle Scholar
  146. Zhang C, Xu J, Ma W, Zheng W (2006) PCR microfluidic devices for DNA amplification. Biotechnol Adv 24:243–284CrossRefGoogle Scholar
  147. Zhao J, Mayes R, Chen G, Chan PS, Xiong ZJ (2003a) Polymer micromould design and micromoulding process. Plast Rubber Compos 32(6):240–247CrossRefGoogle Scholar
  148. Zhao J, Mayes R, Chen G, Xie H, Chan P (2003b) Effects of process parameters on the micro molding process. Polym Eng Sci 43(9):1542–1554CrossRefGoogle Scholar
  149. Zhao J, Chen G, Juay Y (2007) Development of process monitoring technologies for polymer micro moulding process. Available at http://www.simtech.a-star.edu.sg/Research/TechnicalReports/TR0321.pdf. Accessed 2 March 2007

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Usama M. Attia
    • 1
    Email author
  • Silvia Marson
    • 1
  • Jeffrey R. Alcock
    • 2
  1. 1.Cranfield UniversityBedfordshireUK
  2. 2.Cranfield UniversityBedfordshireUK

Personalised recommendations