Surface enhanced Raman spectroscopy and its application to molecular and cellular analysis

Review

Abstract

In this paper, we review the state-of-the-art in surface-enhanced Raman scattering (SERS) based optical detection techniques with an application focus on cancer diagnostics. As we describe herein, SERS has several analytical, biological and engineering advantages over other methods including extremely high sensitivity, inherent molecular specificity of unlabeled targets, and narrow spectral bands. We review advances in both in vitro and in vivo applications of SERS and examine how technical issues with the technology are being addressed. A special technology focus is given to emerging optofluidic devices which aim to merge microfluidic and optical detection technologies into simple packages. We conclude with a brief discussion of some of the emerging challenges in the field and some of the approaches that are likely to enhance their application.

Keywords

Optical biosensors Surface enhanced Raman scattering SERS Cancer Optofluidics Tip-enhanced Raman spectroscopy 

References

  1. Abu-Hatab NA, John JF, Oran JM, Sepaniak MJ (2007) Multiplexed microfluidic surface-enhanced Raman spectroscopy. Appl Spectrosc 61(10):1116–1122CrossRefGoogle Scholar
  2. Allain LR, Vo-Dinh T (2002) Surface-enhanced Raman scattering detection of the breast cancer susceptibility gene BRCA1 using a silver-coated microarray platform. Anal Chim Acta 469(1):149–154CrossRefGoogle Scholar
  3. Arlett JL, Maloney JR, Gudlewski B, Muluneh M, Roukes ML (2006) Self-sensing micro- and nanocantilevers with attonewton-scale force resolution. Nano Lett 6(5):1000–1006CrossRefGoogle Scholar
  4. Breuzard G, Angiboust JF, Jeannesson P, Manfait M, Millot JM (2004) Surface-enhanced Raman scattering reveals adsorption of mitoxantrone on plasma membrane of living cells. Biochem Biophys Res Commun 320(2):615–621CrossRefGoogle Scholar
  5. Brolo AG, Arctander E, Gordon R, Leathem B, Kavanagh KL (2004) Nanohole-enhanced Raman scattering. Nano Lett 4(10):2015–2018CrossRefGoogle Scholar
  6. Brus L (2008) Noble metal nanocrystals: plasmon electron transfer photochemistry and single-molecule Raman spectroscopy. Acc Chem Res (in press)Google Scholar
  7. Campagnolo C, Meyers KJ, Ryan T, Atkinson RC, Chen YT, Scanlan MJ, Ritter G, Old LJ, Batt CA (2004) Real-time, label-free monitoring of tumor antigen and serum antibody interactions. J Biochem Biophys Methods 61(3):283–298CrossRefGoogle Scholar
  8. Cao YC, Jin R, Mirkin CA (2002) Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297(5586):1536–1540CrossRefGoogle Scholar
  9. Chen L, Choo J (2008) Recent advances in surface-enhanced Raman scattering detection technology for microfluidic chips. Electrophoresis 29(9):1815–1828CrossRefGoogle Scholar
  10. Cheng IF, Chang H-C, Hou D, Chang H-C (2007) An integrated dielectrophoretic chip for continuous bioparticle filtering, focusing, sorting, trapping, and detecting. Biomicrofluidics 1(2):021503–021515CrossRefGoogle Scholar
  11. Chithrani BD, Ghazani AA, Chan WCW (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6(4):662–668CrossRefGoogle Scholar
  12. Culha M, Stokes D, Allain LR, Vo-Dinh T (2003) Surface-enhanced Raman scattering substrate based on a self-assembled monolayer for use in gene diagnostics. Anal Chem 75(22):6196–6201CrossRefGoogle Scholar
  13. Demming AL, Festy F, Richards D (2005) Plasmon resonances on metal tips: understanding tip-enhanced Raman scattering. J Chem Phys 122(18):184716CrossRefGoogle Scholar
  14. Dick LA, McFarland AD, Haynes CL, Van Duyne RP (2002) Metal film over nanosphere (MFON) electrodes for surface-enhanced Raman spectroscopy (SERS): improvements in surface nanostructure stability and suppression of irreversible loss. J Phys Chem B 106(4):853–860CrossRefGoogle Scholar
  15. Docherty FT, Monaghan PB, Keir R, Graham D, Smith WE, Cooper JM (2004) The first SERRS multiplexing from labelled oligonucleotides in a microfluidics lab-on-a-chip. Chem Commun (1): 118–9Google Scholar
  16. Dou X, Yamaguchi Y, Yamamoto H, Doi S, Ozaki Y (1998) NIR SERS detection of immune reaction on gold colloid particles without bound/free antigen separation. J Raman Spectrosc 29(8):739–742CrossRefGoogle Scholar
  17. Erickson D, Mandal S, Yang AHJ, Cordovez B (2008) Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale. Microfluid Nanofluid 4:33–52CrossRefGoogle Scholar
  18. Fabris L, Dante M, Braun G, Lee SJ, Reich NO, Moskovits M, Nguyen TQ, Bazan GC (2007) A heterogeneous PNA-based SERS method for DNA detection. J Am Chem Soc 129(19):6086–6087CrossRefGoogle Scholar
  19. Fan XD, White IM, Shopoua SI, Zhu HY, Suter JD, Sun YZ (2008) Sensitive optical biosensors for unlabeled targets: a review. Anal Chim Acta 620(1–2):8–26CrossRefGoogle Scholar
  20. Faulds K, Jarvis R, Smith WE, Graham D, Goodacre R (2008) Multiplexed detection of six labelled oligonucleotides using surface enhanced resonance Raman scattering (SERRS). Analyst 133(11):1505–1512CrossRefGoogle Scholar
  21. Felidj N, Truong SL, Aubard J, Levi G, Krenn JR, Hohenau A, Leitner A, Aussenegg FR (2004) Gold particle interaction in regular arrays probed by surface enhanced Raman scattering. J Chem Phys 120(15):7141–7146CrossRefGoogle Scholar
  22. Grubisha DS, Lipert RJ, Park HY, Driskell J, Porter MD (2003) Femtomolar detection of prostate-specific antigen: an immunoassay based on surface-enhanced Raman scattering and immunogold labels. Anal Chem 75(21):5936–5943CrossRefGoogle Scholar
  23. Hahn WC, Weinberg RA (2002) Modelling the molecular circuitry of cancer. Nat Rev Cancer 2(5):331–341CrossRefGoogle Scholar
  24. Hammody Z, Huleihel M, Salman A, Argov S, Moreh R, Katzir A, Mordechai S (2007) Potential of ‘flat’ fibre evanescent wave spectroscopy to discriminate between normal and malignant cells in vitro. J Microsc 228(Pt 2):200–210CrossRefMathSciNetGoogle Scholar
  25. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70CrossRefGoogle Scholar
  26. Haslett TL, Tay L, Moskovits M (2000) Can surface-enhanced Raman scattering serve as a channel for strong optical pumping? J Chem Phys 113(4):1641–1646CrossRefGoogle Scholar
  27. Hayazawa N, Inouye Y, Sekkat Z, Kawata S (2001) Near-field Raman scattering enhanced by a metallized tip. Chem Phys Lett 335(5–6):369–374CrossRefGoogle Scholar
  28. Huang L, Reekmans G, Saerens D, Friedt JM, Frederix F, Francis L, Muyldermans S, Campitelli A, Van Hoof C (2005) Prostate-specific antigen immunosensing based on mixed self-assembled monolayers, camel antibodies and colloidal gold enhanced sandwich assays. Biosens Bioelectron 21(3):483–490CrossRefGoogle Scholar
  29. Huh YS, Chung AJ, Cordovez B, Erickson D (2008) Enhanced on-chip SERS based biomolecular detection using electrokinetically active microwells. Lab Chip (in press)Google Scholar
  30. Ilic B, Yang Y, Aubin K, Reichenbach R, Krylov S, Craighead HG (2005) Enumeration of DNA molecules bound to a nanomechanical oscillator. Nano Lett 5(5):925–929CrossRefGoogle Scholar
  31. Isola NR, Stokes DL, Vo-Dinh T (1998) Surface-enhanced Raman gene probe for HIV detection. Anal Chem 70(7):1352–1356CrossRefGoogle Scholar
  32. Jackson JB, Westcott SL, Hirsch LR, West JL, Halas NJ (2003) Controlling the surface enhanced Raman effect via the nanoshell geometry. Appl Phys Lett 82(2):257–259CrossRefGoogle Scholar
  33. Jacobson ML, Rowlen KL (2005) Photo-dynamics on thin silver films. Chem Phys Lett 401(1–3):52–57CrossRefGoogle Scholar
  34. Jarvis RM, Goodacre R (2008) Characterisation and identification of bacteria using SERS. Chem Soc Rev 37(5):931–936CrossRefGoogle Scholar
  35. Jun BH, Kim JH, Park H, Kim JS, Yu KN, Lee SM, Choi H, Kwak SY, Kim YK, Jeong DH, Cho MH, Lee YS (2007) Surface-enhanced Raman spectroscopic-encoded beads for multiplex immunoassay. J Comb Chem 9(2):237–244CrossRefGoogle Scholar
  36. Jung J, Chen L, Lee S, Kim S, Seong GH, Choo J, Lee EK, Oh CH, Lee S (2007) Fast and sensitive DNA analysis using changes in the FRET signals of molecular beacons in a PDMS microfluidic channel. Anal Bioanal Chem 387(8):2609–2615CrossRefGoogle Scholar
  37. Kambhampati P, Campion A, Song OK (1999) Probing photoinduced charge transfer at atomically smooth metal surfaces using surface enhanced Raman scattering. Phys Status Solidi A 175(1):233–239CrossRefGoogle Scholar
  38. Kim JH, Kim JS, Choi H, Lee SM, Jun BH, Yu KN, Kuk E, Kim YK, Jeong DH, Cho MH (2006) Nanoparticle probes with surface enhanced Raman spectroscopic tags for cellular cancer targeting. Anal Chem 78(19):6967–6973CrossRefGoogle Scholar
  39. Kneipp J, Kneipp H, Rice WL, Kneipp K (2005) Optical probes for biological applications based on surface-enhanced Raman scattering from indocyanine green on gold nanoparticles. Anal Chem 77(8):2381–2385CrossRefGoogle Scholar
  40. Kneipp K, Kneipp H, Deinum G, Itzkan I, Dasari RR, Feld MS (1998a) Single-molecule detection of a cyanine dye in silver colloidal solution using near-infrared surface-enhanced Raman scattering. Appl Spectrosc 52(2):175–178CrossRefGoogle Scholar
  41. Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS (1999) Ultrasensitive chemical analysis by Raman spectroscopy. Chem Rev 99(10):2957–2976CrossRefGoogle Scholar
  42. Kneipp K, Kneipp H, Kartha VB, Manoharan R, Deinum G, Itzkan I, Dasari RR, Feld MS (1998b) Detection and identification of a single DNA base molecule using surface-enhanced Raman scattering (SERS). Phys Rev E 57(6):R6281CrossRefGoogle Scholar
  43. Li T, Guo L, Wang Z (2008) Gold nanoparticle-based surface enhanced Raman scattering spectroscopic assay for the detection of protein–protein interactions. Anal Sci 24(7):907–910CrossRefGoogle Scholar
  44. Lin C-C, Yang Y-M, Chen Y-F, Yang T-S, Chang H-C (2008) A new protein A assay based on Raman reporter labeled immunogold nanoparticles. Biosens Bioelectron 24(2):178–183CrossRefGoogle Scholar
  45. Liu YC, Yu CC, Sheu SF (2006) Improved surface-enhanced Raman scattering on optimum electrochemically roughened silver substrates. Anal Chim Acta 577(2):271–275CrossRefGoogle Scholar
  46. Liu GL, Rosa-Bauza YT, Salisbury CM, Craik C, Ellman JA, Chen FF, Lee LP (2007) Peptide-nanoparticle hybrid SERS probes for optical detection of protease activity. J Nanosci Nanotechnol 7(7):2323–2330CrossRefGoogle Scholar
  47. Mahajan S, Baumberg JJ, Russell AE, Bartlett PN (2007) Reproducible SERRS from structured gold surfaces. Phys Chem Chem Phys 9(45):6016–6020CrossRefGoogle Scholar
  48. Michaels AM, Nirmal M, Brus LE (1999) Surface enhanced Raman spectroscopy of individual Rhodamine 6G molecules on large Ag nanocrystals. J Am Chem Soc 121(43):9932–9939CrossRefGoogle Scholar
  49. Moskovits M, Tay L-L, Yang J, Haslett T (2002) SERS and the single molecule. Optical properties of nanostructured random media: 215–227Google Scholar
  50. Ni J, Lipert RJ, Dawson GB, Porter MD (1999) Immunoassay readout method using extrinsic Raman labels adsorbed on immunogold colloids. Anal Chem 71(21):4903–4908CrossRefGoogle Scholar
  51. Nie S, Emory SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275(5303):1102–1106CrossRefGoogle Scholar
  52. Nikoobakht B, El-Sayed MA (2003) Surface-enhanced Raman scattering studies on aggregated gold nanorods. J Phys Chem A 107(18):3372–3378CrossRefGoogle Scholar
  53. Notingher I, Elfick A (2005) Effect of sample and substrate electric properties on the electric field enhancement at the apex of SPM nanotips. J Phys Chem B 109(33):15699–15706CrossRefGoogle Scholar
  54. Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S, Herman P, Kaye FJ, Lindeman N, Boggon TJ, Naoki K, Sasaki H, Fujii Y, Eck MJ, Sellers WR, Johnson BE, Meyerson M (2004) EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304(5676):1497–1500CrossRefGoogle Scholar
  55. Pal A, Isola NR, Alarie JP, Stokes DL, Vo-Dinh T (2006) Synthesis and characterization of SERS gene probe for BRCA-1 (breast cancer). Faraday Discuss 132:293–301CrossRefGoogle Scholar
  56. Park T, Lee S, Seong GH, Choo J, Lee EK, Kim YS, Ji WH, Hwang SY, Gweon D-G, Lee S (2005) Highly sensitive signal detection of duplex dye-labelled DNA oligonucleotides in a PDMS microfluidic chip: confocal surface-enhanced Raman spectroscopic study. Lab Chip 5(4):437–442CrossRefGoogle Scholar
  57. Petrovsky A, Schellenberger E, Josephson L, Weissleder R, Bogdanov A Jr (2003) Near-infrared fluorescent imaging of tumor apoptosis. Cancer Res 63(8):1936–1942Google Scholar
  58. Pettinger B, Picardi G, Schuster R, Ertl G (2002) Surface-enhanced and STM-tip-enhanced Raman spectroscopy at metal surfaces. Single Mol 3(5–6):285–294CrossRefGoogle Scholar
  59. Pettinger B, Ren B, Picardi G, Schuster R, Ertl G (2004) Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy. Phys Rev Lett 92(9):96101CrossRefGoogle Scholar
  60. Qian X, Peng XH, Ansari DO, Yin-Goen Q, Chen GZ, Shin DM, Yang L, Young AN, Wang MD, Nie S (2008) In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat Biotechnol 26(1):83–90CrossRefGoogle Scholar
  61. Qian XM, Nie SM (2008) Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications. Chem Soc Rev 37(5):912–920CrossRefGoogle Scholar
  62. Riley MR, Lucas P, Coq DL, Juncker C, Boesewetter DE, Collier JL, DeRosa DM, Katterman ME, Boussard-Plédel C, Bureau B (2006) Lung cell fiber evanescent wave spectroscopic biosensing of inhalation health hazards. Biotech Bioeng 95(4):599–612CrossRefGoogle Scholar
  63. Schwartzberg AM, Zhang JZ (2008) Novel optical properties and emerging applications of metal nanostructures. J Phys Chem C 112(28):10323–10337CrossRefGoogle Scholar
  64. Sha MY, Xu H, Penn SG, Cromer R (2007) SERS nanoparticles: a new optical detection modality for cancer diagnosis. Nanomed 2(5):725–734CrossRefGoogle Scholar
  65. Shafer-Peltier KE, Haka AS, Fitzmaurice M, Crowe J, Myles J, Dasari RR, Feld MS (2002) Raman microspectroscopic model of human breast tissue: implications for breast cancer diagnosis in vivo. J Raman Spectrosc 33(7):552–563CrossRefGoogle Scholar
  66. Shamsaie A, Jonczyk M, Sturgis J, Robinson JP, Irudayaraj J (2007) Intracellularly grown gold nanoparticles as potential surface-enhanced Raman scattering probes. J Biomed Opt 12(2):020502CrossRefGoogle Scholar
  67. Shim MG, Song LM, Marcon NE, Wilson BC (2000) In vivo near-infrared Raman spectroscopy: demonstration of feasibility during clinical gastrointestinal endoscopy. Photochem Photobiol 72(1):146–150CrossRefGoogle Scholar
  68. Strehle KR, Cialla D, Rosch P, Henkel T, Kohler M, Popp J (2007) A reproducible surface-enhanced Raman spectroscopy approach. Online SERS measurements in a segmented microfluidic system. Anal Chem 79(4):1542–1547CrossRefGoogle Scholar
  69. Sun L, Yu C, Irudayaraj J (2008) Raman multiplexers for alternative gene splicing. Anal Chem 80(9):3342–3349CrossRefGoogle Scholar
  70. Sun WX, Shen ZX (2003) Apertureless near-field scanning Raman microscopy using reflection scattering geometry. Ultramicroscopy 94(3–4):237–244CrossRefGoogle Scholar
  71. Tang HW, Yang XB, Kirkham J, Smith DA (2007) Probing intrinsic and extrinsic components in single osteosarcoma cells by near-infrared surface-enhanced Raman scattering. Anal Chem 79(10):3646–3653CrossRefGoogle Scholar
  72. Tao AR, Yang P (2005) Polarized surface-enhanced Raman spectroscopy on coupled metallic nanowires. J Phys Chem B 109(33):15687–15690CrossRefGoogle Scholar
  73. Tian Z-Q, Ren B, Li J-F, Yang Z-L (2007) Expanding generality of surface-enhanced Raman spectroscopy with borrowing SERS activity strategy. Chem Commn (34): 3514–3534Google Scholar
  74. Utzinger U, Richards-Kortum RR (2003) Fiber optic probes for biomedical optical spectroscopy. J Biomed Opt 8(1):121–147CrossRefGoogle Scholar
  75. van de Poll SWE, Bakker Schut TC, van der Laarse A, Puppels GJ (2002) In situ investigation of the chemical composition of ceroid in human atherosclerosis by Raman spectroscopy. J Raman Spectrosc 33(7):544–551CrossRefGoogle Scholar
  76. Verville GJ, Sanderson GA (2000) Early atokan fusulinids from the lower Antler overlap sequence, Lander and Humboldt counties, Nevada. Journal of Paleontology 62(4):520Google Scholar
  77. Vo-Dinh T (2008) Nanobiosensing using plasmonic nanoprobes. IEEE J Sel Top Quant 14(1):198CrossRefGoogle Scholar
  78. Vo-Dinh T, Allain LR, Stokes DL (2002) Cancer gene detection using surface-enhanced Raman scattering (SERS). J Raman Spectrosc 33(7):511–516CrossRefGoogle Scholar
  79. Wabuyele MB, Vo-Dinh T (2005) Detection of human immunodeficiency virus type 1 DNA sequence using plasmonics nanoprobes. Anal Chem 77(23):7810–7815CrossRefGoogle Scholar
  80. Wabuyele MB, Yan F, Griffin GD, Vo-Dinh T (2005) Hyperspectral surface-enhanced Raman imaging of labeled silver nanoparticles in single cells. Rev Sci Instrum 76(6):063710–063717CrossRefGoogle Scholar
  81. Wang H, Levin CS, Halas NJ (2005) Nanosphere arrays with controlled sub-10-nm gaps as surface-enhanced Raman spectroscopy substrates. J Am Chem Soc 127(43):14992–14993CrossRefGoogle Scholar
  82. Wang M, Jing N, Chou IH, Cote GL, Kameoka J (2007) An optofluidic device for surface enhanced Raman spectroscopy. Lab Chip 7(5):630–632CrossRefGoogle Scholar
  83. Wen R, Fang Y (2005) An investigation of the surface-enhanced Raman scattering (SERS) effect from a new substrate of silver-modified silver electrode. J Colloid Interface Sci 292(2):469–475CrossRefGoogle Scholar
  84. Wessel J (1985) Surface-enhanced optical microscopy. J Opt Soc Am B 2(9):1538–1541CrossRefGoogle Scholar
  85. White IM, Gohring J, Fan X (2007) SERS-based detection in an optofluidic ring resonator platform. Opt Express 15(25):17433–17442CrossRefGoogle Scholar
  86. Wolfbeis OS (1991) Fiber optic chemical sensors and biosensors. CRC Press, Boca RatonGoogle Scholar
  87. Xu S, Ji X, Xu W, Li X, Wang L, Bai Y, Zhao B, Ozaki Y (2004) Immunoassay using probe-labelling immunogold nanoparticles with silver staining enhancement via surface-enhanced Raman scattering. Analyst 129(1):63–68CrossRefGoogle Scholar
  88. Xu Y, Wu J, Sun W, Tao D, Yang L, Song Z, Weng S, Xu Z, Soloway RD, Xu D, Xu G (2002) A new mechanism of Raman enhancement and its application. Chemistry 8(23):5323–5331CrossRefGoogle Scholar
  89. Yakes BJ, Lipert RJ, Bannantine JP, Porter MD (2008) Detection of Mycobacterium avium subsp. paratuberculosis by a sonicate immunoassay based on surface-enhanced Raman scattering. Clin Vaccine Immunol 15(2):227–234CrossRefGoogle Scholar
  90. Yu KN, Lee SM, Han JY, Park H, Woo MA, Noh MS, Hwang SK, Kwon JT, Jin H, Kim YK, Hergenrother PJ, Jeong DH, Lee YS, Cho MH (2007) Multiplex targeting, tracking, and imaging of apoptosis by fluorescent surface enhanced Raman spectroscopic dots. Bioconj Chem 18(4):1155–1162CrossRefGoogle Scholar
  91. Zhang CY, Johnson LW (2006) Quantum-dot-based nanosensor for RRE IIB RNA-Rev peptide interaction assay. J Am Chem Soc 128(16):5324–5325CrossRefGoogle Scholar
  92. Zheng GF, Patolsky F, Cui Y, Wang WU, Lieber CM (2005) Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat Biotechnol 23(10):1294–1301CrossRefGoogle Scholar
  93. Zou X, Dong S (2006) Surface-enhanced Raman scattering studies on aggregated silver nanoplates in aqueous solution. J Phys Chem B 110(43):21545–21550CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Sibley School of Mechanical and Aerospace EngineeringCornell UniversityIthacaUSA

Personalised recommendations