Advertisement

Ion bridges in microfluidic systems

  • Sangyun Park
  • Taek Dong ChungEmail author
  • Hee Chan KimEmail author
Review

Abstract

Recently many microfluidic systems are increasingly equipped with functional units for ionic controls for various applications. In this review article, we define an ion bridge as a structure that controls current or distribution of ions in a microfluidic system, and summarize the ion bridges in the literature in terms of characteristics, fabrication methods, advantages and disadvantages. The ion bridges play two basic roles, namely to ensure electrical contact in a microfluidic network and mechanically separate a liquid phase from another. More interestingly, the charged surfaces of ion bridges, which can be chemically modified, create new characteristics such as permselectivity and concentration polarization. Asymmetric ion transport as well as ionic conductivity through the ion bridges suggests a variety of applications including sample preconcentration, electroosmotic pump, electrospray ionization, electrically driven valve and many others. This review categorizes the ion bridges into several classes and describes the structures, materials, fundamental functions and applications. In Perspectives, new opportunities of microfluidics and nanofluidics provided by the ion bridges are discussed.

Keywords

Ion bridge Microfluidics Nanochannel Photopolymerization Ion control Concentration polarization 

Abbreviations

AA

Acrylic acid

AAPH

2,2′-Azobis(2-methylpropionamidine) dihydrochloride

AIBN

Azobisisobutyronitrile

APS

Ammonium persulfate

Bis-acrylamide

N,N′-methylenebisacrylamide

DADMAC

Diallyldimethylammonium chloride

DBL

Diffusion boundary layer

DMPA

2,2-Dimethoxy-2-phenylacetophenone

EFGF

Electric field gradient focusing

EGDA

Ethylene glycol diacrylate

EGDM

Ethylene glycol dimethacrylate

FFIEF

Free-flow isoelectric focusing

GMA

Glycidyl methacrylate

HCPK

Hydroxy cyclohexyl phenyl ketone

HEMA

2-Hydroxyethyl methacrylate

MMA

Methyl methacrylate

PCTE

Polycarbonate nuclear track-etched

PEGA

Poly(ethylene glycol) acrylate

PEG-DA

Poly(ethylene glycol) diacrylate

PET

Poly(ethylene terephthalate)

PETE

Polyester nuclear track-etched

PVP

Poly(vinylpyrrolidone)

SPE

2-(N-3-sulfopropyl-N,N-dimethylammonium)ethyl methacrylate

Notes

Acknowledgments

This work was supported by the Korea Science and Engineering Foundation (KOSEF) grant funded by the Korea government (MEST) (No. R11-2008-012-00000-0) and by the Next Generation New Technology Development Program funded by MKE, Korea.

References

  1. Beebe DJ, Moore JS, Bauer JM, Yu Q, Liu RH, Devadoss C, Jo BH (2000) Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 404(6778):560–588Google Scholar
  2. Brask A, Goranovic G, Bruus H (2003) Theoretical analysis of the low-voltage cascade electro-osmotic pump. Sens Actuators B 92(1–2):127–132Google Scholar
  3. Byun CK, Wang XY, Pu QS, Liu SR (2007) Electroosmosis-based nanopipettor. Anal Chem 79(10):3862–3866Google Scholar
  4. Cannon DM, Kuo TC, Bohn PW, Sweedler JV (2003) Nanocapillary array interconnects for gated analyte injections and electrophoretic separations in multilayer microfluidic architectures. Anal Chem 75(10):2224–2230Google Scholar
  5. Cayre OJ, Chang ST, Velev OD (2007) Polyelectrolyte diode: nonlinear current response of a junction between aqueous ionic gels. J Am Chem Soc 129(35):10801–10806Google Scholar
  6. Chang CC, Yang RJ (2007) Electrokinetic mixing in microfluidic systems. Microfluid Nanofluid 3(5):501–525Google Scholar
  7. Chatterjee AN, Cannon DM, Gatimu EN, Sweedler JV, Aluru NR, Bohn PW (2005) Modeling and simulation of ionic currents in three-dimensional microfluidic devices with nanofluidic interconnects. J Nanopart Res 7(4–5):507–516Google Scholar
  8. Cho BS, Schuster TG, Zhu XY, Chang D, Smith GD, Takayama S (2003) Passively driven integrated microfluidic system for separation of motile sperm. Anal Chem 75(7):1671–1675Google Scholar
  9. Chun HG, Chung TD, Kim HC (2005) Cytometry and velocimetry on a microfluidic chip using polyelectrolytic salt bridges. Anal Chem 77(8):2490–2495Google Scholar
  10. Chun H, Kim HC, Chung TD (2008) Ultrafast active mixer using polyelectrolytic ion extractor. Lab Chip 8(5):764–771Google Scholar
  11. Chung AJ, Kim D, Erickson D (2008) Electrokinetic microfluidic devices for rapid, low power drug delivery in autonomous microsystems. Lab Chip 8(2):330–338Google Scholar
  12. Dai JH, Ito T, Sun L, Crooks RM (2003) Electrokinetic trapping and concentration enrichment of DNA in a microfluidic channel. J Am Chem Soc 125(43):13026–13027Google Scholar
  13. Das C, Fredrickson CK, Xia Z, Fan ZH (2007a) Device fabrication and integration with photodefinable microvalves for protein separation. Sens Actuators A 134(1):271–277Google Scholar
  14. Das C, Zhang J, Denslow ND, Fan ZH (2007b) Integration of isoelectric focusing with multi-channel gel electrophoresis by using microfluidic pseudo-valves. Lab Chip 7(12):1806–1812Google Scholar
  15. Datta A, Gangopadhyay S, Temkin H, Pu QS, Liu SR (2006) Nanofluidic channels by anodic bonding of amorphous silicon to glass to study ion-accumulation and ion-depletion effect. Talanta 68(3):659–665Google Scholar
  16. Dhopeshwarkar R, Li SA, Crooks RM (2005) Electrokinetic concentration enrichment within a microfluidic device using a hydrogel microplug. Lab Chip 5(10):1148–1154Google Scholar
  17. Dhopeshwarkar R, Crooks RM, Hlushkou D, Tallarek U (2008) Transient effects on microchannel electrokinetic filtering with an ion-permselective membrane. Anal Chem 80(4):1039–1048Google Scholar
  18. Ehlert S, Hlushkou D, Tallarek U (2008) Electrohydrodynamics around single ion-permselective glass beads fixed in a microfluidic device. Microfluid Nanofluid 4(6):471–487Google Scholar
  19. Foote RS, Khandurina J, Jacobson SC, Ramsey JM (2005) Preconcentration of proteins on microfluidic devices using porous silica membranes. Anal Chem 77(1):57–63Google Scholar
  20. Gao J, Xu JD, Locascio LE, Lee CS (2001) Integrated microfluidic system enabling protein digestion, peptide separation, and protein identification. Anal Chem 73(11):2648–2655Google Scholar
  21. Gascoyne PRC, Vykoukal JV (2004) Dielectrophoresis-based sample handling in general-purpose programmable diagnostic instruments. Proc IEEE 92(1):22–42Google Scholar
  22. Gatimu EN, Sweedler JV, Bohn PW (2006) Nanofluidics and the role of nanocapillary array membranes in mass-limited chemical analysis. Analyst 131(6):705–709Google Scholar
  23. Gong M, Flachsbart BR, Shannon MA, Bohn PW, Sweedler JV (2008) Fluidic communication between multiple vertically segregated microfluidic channels connected by nanocapillary array membranes. Electrophoresis 29(6):1237–1244Google Scholar
  24. Hatch AV, Herr AE, Throckmorton DJ, Brennan JS, Singh AK (2006) Integrated preconcentration SDS-PAGE of proteins in microchips using photopatterned cross-linked polyacrylamide gels. Anal Chem 78(14):4976–4984Google Scholar
  25. Hlushkou D, Dhopeshwarkar R, Crooks RM, Tallarek U (2008) The influence of membrane ion-permselectivity on electrokinetic concentration enrichment in membrane-based preconcentration units. Lab Chip 8(7):1153–1162Google Scholar
  26. Holtzel A, Tallarek U (2007) Ionic conductance of nanopores in microscale analysis systems: where microfluldics meets nanofluidics. J Sep Sci 30(10):1398–1419Google Scholar
  27. Humble PH, Kelly RT, Woolley AT, Tolley HD, Lee ML (2004) Electric field gradient focusing of proteins based on shaped ionically conductive acrylic polymer. Anal Chem 76(19):5641–5648Google Scholar
  28. Humble PH, Harb JN, Tolley HD, Woolley AT, Farnsworth PB, Lee ML (2007) Influence of transport properties in electric field gradient focusing. J Chromatogr A 1160(1–2):311–319Google Scholar
  29. Iannacone JM, Jakubowski JA, Bohn PW, Sweedler JV (2005) A multilayer poly(dimethylsiloxane) electrospray ionization emitter for sample injection and online mass spectrometric detection. Electrophoresis 26(24):4684–4690Google Scholar
  30. Jiang Y, Wang PC, Locascio LE, Lee CS (2001) Integrated plastic microftuidic devices with ESI-MS for drug screening and residue analysis. Anal Chem 73(9):2048–2053Google Scholar
  31. Jin XZ, Joseph S, Gatimu EN, Bohn PW, Aluru NR (2007) Induced electrokinetic transport in micro-nanofluidic interconnect devices. Langmuir 23(26):13209–13222Google Scholar
  32. Jung B, Bharadwaj R, Santiago JG (2003) Thousandfold signal increase using field-amplified sample stacking for on-chip electrophoresis. Electrophoresis 24(19–20):3476–3483Google Scholar
  33. Karnik R, Castelino K, Fan R, Yang P, Majumdar A (2005a) Effects of biological reactions and modifications on conductance of nanofluidic channels. Nano Lett 5(9):1638–1642Google Scholar
  34. Karnik R, Fan R, Yue M, Li DY, Yang PD, Majumdar A (2005b) Electrostatic control of ions and molecules in nanofluidic transistors. Nano Lett 5(5):943–948Google Scholar
  35. Karnik R, Castelino K, Majumdar A (2006) Field-effect control of protein transport in a nanofluidic transistor circuit. Appl Phys Lett 88(12):123114–123116Google Scholar
  36. Karnik R, Duan CH, Castelino K, Daiguji H, Majumdar A (2007) Rectification of ionic current in a nanofluidic diode. Nano Lett 7(3):547–551Google Scholar
  37. Kemery PJ, Steehler JK, Bohn PW (1998) Electric field mediated transport in nanometer diameter channels. Langmuir 14(10):2884–2889Google Scholar
  38. Khandurina J, Guttman A (2002) Bioanalysis in microfluidic devices. J Chromatogr A 943(2):159–183Google Scholar
  39. Khandurina J, Jacobson SC, Waters LC, Foote RS, Ramsey JM (1999) Microfabricated porous membrane structure for sample concentration and electrophoretic analysis. Anal Chem 71(9):1815–1819Google Scholar
  40. Khandurina J, McKnight TE, Jacobson SC, Waters LC, Foote RS, Ramsey JM (2000) Integrated system for rapid PCR-based DNA analysis in microfluidic devices. Anal Chem 72(13):2995–3000Google Scholar
  41. Kim SK, Lim H, Chung TD, Kim HC (2006a) A miniaturized electrochemical system with a novel polyelectrolyte reference electrode and its application to thin layer electroanalysis. Sens Actuators B 115(1):212–219Google Scholar
  42. Kim SM, Burns MA, Hasselbrink EF (2006b) Electrokinetic protein preconcentration using a simple glass/poly(dimethylsiloxane) microfluidic chip. Anal Chem 78(14):4779–4785Google Scholar
  43. Kim SK, Kim JY, Kim KP, Chung TD (2007) Continuous low-voltage dc electroporation on a microfluidic chip with polyelectrolytic salt bridges. Anal Chem 79(20):7761–7766Google Scholar
  44. Kim D, Raj A, Zhu L, Masel RI, Shannon MA (2008a) Non-equilibrium electrokinetic micro/nanofluidic mixer. Lab Chip 8(4):625–628Google Scholar
  45. Kim DK, Kim D, Kim SJ (2008b) An electrokinetic pressure sensor. J Micromech Microeng 18(5):55006–55015Google Scholar
  46. Kirby BJ, Hasselbrink EF (2004a) Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations. Electrophoresis 25(2):187–202Google Scholar
  47. Kirby BJ, Hasselbrink EF (2004b) Zeta potential of microfluidic substrates: 2. Data for polymers. Electrophoresis 25(2):203–213Google Scholar
  48. Kohlheyer D, Besselink GAJ, Schlautmann S, Schasfoort RBM (2006) Free-flow zone electrophoresis and isoelectric focusing using a microfabricated glass device with ion permeable membranes. Lab Chip 6(3):374–380Google Scholar
  49. Kohlheyer D, Eijkel JCT, Schlautmann S, van den Berg A, Schasfoort RBM (2007) Microfluidic high-resolution free-flow isoelectric focusing. Anal Chem 79(21):8190–8198Google Scholar
  50. Koster S, Verpoorte E (2007) A decade of microfluidic analysis coupled with electrospray mass spectrometry: An overview. Lab Chip 7(11):1394–1412Google Scholar
  51. Kovarik ML, Jacobson SC (2008) Integrated nanopore/microchannel devices for ac electroldnetic trapping of particles. Anal Chem 80(3):657–664Google Scholar
  52. Krasemann L, Tieke B (2000) Selective ion transport across self-assembled alternating multilayers of cationic and anionic polyelectrolytes. Langmuir 16(2):287–290Google Scholar
  53. Kuo TC, Cannon DM, Chen YN, Tulock JJ, Shannon MA, Sweedler JV, Bohn PW (2003a) Gateable nanofluidic interconnects for multilayered microfluidic separation systems. Anal Chem 75(8):1861–1867Google Scholar
  54. Kuo TC, Cannon DM, Shannon MA, Bohn PW, Sweedler JV (2003b) Hybrid three-dimensional nanofluidic/microfluidic devices using molecular gates. Sens Actuators A 102(3):223–233Google Scholar
  55. Lacher NA, Garrison KE, Martin RS, Lunte SM (2001) Microchip capillary electrophoresis/electrochemistry. Electrophoresis 22(12):2526–2536Google Scholar
  56. Lazar IM, Karger BL (2002) Multiple open-channel electroosmotic pumping system for microfluidic sample handling. Anal Chem 74(24):6259–6268Google Scholar
  57. Lazar IM, Ramsey RS, Jacobson SC, Foote RS, Ramsey JM (2000) Novel microfabricated device for electrokinetically induced pressure flow and electrospray ionization mass spectrometry. J Chromatogr A 892(1–2):195–201Google Scholar
  58. Lazar IM, Li LJ, Yang Y, Karger BL (2003) Microfluidic device for capillary electrochromatography-mass spectrometry. Electrophoresis 24(21):3655–3662Google Scholar
  59. Lee TMH, Hsing IM (2006) DNA-based bioanalytical microsystems for handheld device applications. Anal Chim Acta 556(1):26–37Google Scholar
  60. Lee SJ, Lee SY (2004) Micro total analysis system (mu-TAS) in biotechnology. Appl Microbiol Biotechnol 64(3):289–299Google Scholar
  61. Lee JH, Chung S, Kim SJ, Han JY (2007) Poly(dimethylsiloxane)-based protein preconcentration using a nanogap generated by junction gap breakdown. Anal Chem 79(17):6868–6873Google Scholar
  62. Lee JH, Song YA, Han JY (2008a) Multiplexed proteomic sample preconcentration device using surface-patterned ion-selective membrane. Lab Chip 8(4):596–601Google Scholar
  63. Lee JH, Song YA, Tannenbaum SR, Han J (2008b) Increase of reaction rate and sensitivity of low-abundance enzyme assay using micro/nanofluidic preconcentration chip. Anal Chem 80(9):3198–3204Google Scholar
  64. Liu RH, Yu Q, Beebe DJ (2002) Fabrication and characterization of hydrogel-based microvalves. J Microelectromech Sys 11(1):45–53Google Scholar
  65. Liu SR, Pu QS, Lu JJ (2003) Electric field-decoupled electroosmotic pump for microfluidic devices. J Chromatogr A 1013(1–2):57–64Google Scholar
  66. Liu SR, Pu QS, Gao L, Korzeniewski C, Matzke C (2005) From nanochannel-induced proton conduction enhancement to a nanochannel-based fuel cell. Nano Lett 5(7):1389–1393Google Scholar
  67. Liu JK, Sun XF, Farnsworth PB, Lee ML (2006) Fabrication of conductive membrane in a polymeric electric field gradient focusing microdevice. Anal Chem 78(13):4654–4662Google Scholar
  68. Liu SR, Pu QS, Byun CK, Wang SL, Lu J, Xiong Y (2007) Probing zeta potential in flat nanochannels. J Phys Chem C 111(29):10818–10823Google Scholar
  69. Liu JK, Yang S, Lee CS, Devoe DL (2008) Polyacrylamide gel plugs enabling 2-D microfluidic protein separations via isoelectric focusing and multiplexed sodium dodecyl sulfate gel electrophoresis. Electrophoresis 29(11):2241–2250Google Scholar
  70. Long ZC, Shen Z, Wu DP, Qin JH, Lin BC (2007) Integrated multilayer microfluidic device with a nanoporous membrane interconnect for online coupling of solid-phase extraction to microchip electrophoresis. Lab Chip 7(12):1819–1824Google Scholar
  71. Lu H, Koo LY, Wang WCM, Lauffenburger DA, Griffith LG, Jensen KF (2004) Microfluidic shear devices for quantitative analysis of cell adhesion. Anal Chem 76(18):5257–5264Google Scholar
  72. Lucchetta EM, Lee JH, Fu LA, Patel NH, Ismagilov RF (2005) Dynamics of Drosophila embryonic patterning network perturbed in space and time using microfluidics. Nature 434(7037):1134–1138Google Scholar
  73. Mafe S, Manzanares JA, Ramirez P (1990) Model for ion-transport in bipolar membranes. Phys Rev A 42(10):6245–6248Google Scholar
  74. Nischang I, Holtzel A, Seidel-Morgenstern A, Tallarek U (2008) Concentration polarization and nonequilibrium electroosmotic slip in hierarchical monolithic structures. Electrophoresis 29(5):1140–1151Google Scholar
  75. Ocvirk G, Munroe M, Tang T, Oleschuk R, Westra K, Harrison DJ (2000) Electrokinetic control of fluid flow in native poly(dimethylsiloxane) capillary electrophoresis devices. Electrophoresis 21(1):107–115Google Scholar
  76. Paek SH, Cho JH, Cho IH, Kim YK, Oh BK (2007) Immunosensors for point-of-care testing. Biochip J 1(1):1–16Google Scholar
  77. Park SW, Lee JH, Yoon HC, Yang SS (2007) A smart bioelectrocatalytic immunosensing lab-on-a-chip for portable diagnostic application. Biochip J 1(1):35–42Google Scholar
  78. Pennathur S, Santiago JG (2005) Electrokinetic transport in nanochannels. 2. Experiments. Anal Chem 77(21):6782–6789Google Scholar
  79. Plecis A, Schoch RB, Renaud P (2005) Ionic transport phenomena in nanofluidics: experimental and theoretical study of the exclusion-enrichment effect on a chip. Nano Lett 5(6):1147–1155Google Scholar
  80. Pu QS, Liu SR (2004) Microfabricated electroosmotic pump for capillary-based sequential injection analysis. Anal Chim Acta 511(1):105–112Google Scholar
  81. Pu QS, Yun JS, Temkin H, Liu SR (2004) Ion-enrichment and ion-depletion effect of nanochannel structures. Nano Lett 4(6):1099–1103Google Scholar
  82. Ramirez P, Rapp HJ, Reichle S, Strathmann H, Mafe S (1992) Current-voltage curves of bipolar membranes. J Appl Phys 72(1):259–264Google Scholar
  83. Rubinstein I, Zaltzman B, Lerman I (2005) Electroconvective instability in concentration polarization and nonequilibrium electro-osmotic slip. Phys Rev E 72(1):11505–11523Google Scholar
  84. Schasfoort RBM, Schlautmann S, Hendrikse L, van den Berg A (1999) Field-effect flow control for microfabricated fluidic networks. Science 286(5441):942–945Google Scholar
  85. Seibel K, Scholer L, Schafer H, Bohm M (2008) A programmable planar electroosmotic micropump for lab-on-a-chip applications. J Micromech Microeng 18(2):25008–25014Google Scholar
  86. Seong GH, Zhan W, Crooks RM (2002) Fabrication of microchambers defined by photopolymerized hydrogels and weirs within microfluidic systems: application to DNA hybridization. Anal Chem 74(14):3372–3377Google Scholar
  87. Slouka Z, Pribyl M, Snita D, Postler T (2007) Transient behavior of an electrolytic diode. Phys Chem Chem Phys 9(39):5374–5381Google Scholar
  88. Snita D, Paces M, Lindner J, Kosek J, Marek M (2001) Nonlinear behaviour of simple ionic systems in hydrogel in an electric field. Faraday Discuss 120:53–66Google Scholar
  89. Song S, Singh AK, Kirby BJ (2004a) Electrophoretic concentration of proteins at laser-patterned nanoporous membranes in microchips. Anal Chem 76(15):4589–4592Google Scholar
  90. Song S, Singh AK, Shepodd TJ, Kirby BJ (2004b) Microchip dialysis of proteins using in situ photopatterned nanoporous polymer membranes. Anal Chem 76(8):2367–2373Google Scholar
  91. Takamura Y, Onoda H, Inokuchi H, Adachi S, Oki A, Horiike Y (2003) Low-voltage electroosmosis pump for stand-alone microfluidics devices. Electrophoresis 24(1–2):185–192Google Scholar
  92. Tallarek U, Leinweber FC, Nischang I (2005) Perspective on concentration polarization effects in electrochromatographic separations. Electrophoresis 26(2):391–404Google Scholar
  93. Tandon V, Kirby BJ (2008) zeta potential and electroosmotic mobility in microfluidic devices fabricated from hydrophobic polymers: 2. Slip and interfacial water structure. Electrophoresis 29(5):1102–1114Google Scholar
  94. Tandon V, Bhagavatula SK, Nelson WC, Kirby BJ (2008) zeta potential and electroosmotic mobility in microfluidic devices fabricated from hydrophobic polymers: 1. The origins of charge. Electrophoresis 29(5):1092–1101Google Scholar
  95. Tantra R, Manz A (2000) Integrated potentiometric detector for use in chip-based flow cells. Anal Chem 72(13):2875–2878Google Scholar
  96. Wang YC, Stevens AL, Han JY (2005) Million-fold preconcentration of proteins and peptides by nanofluidic filter. Anal Chem 77(14):4293–4299Google Scholar
  97. Wen J, Lin YH, Xiang F, Matson DW, Udseth HR, Smith RD (2000) Microfabricated isoelectric focusing device for direct electrospray ionization-mass spectrometry. Electrophoresis 21(1):191–197Google Scholar
  98. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442(7101):368–373Google Scholar
  99. Wu CC, Wu RG, Huang JG, Lin YC, Chang HC (2003) Three-electrode electrochemical detector and platinum film decoupler integrated with a capillary electrophoresis microchip for amperometric detection. Anal Chem 75(4):947–952Google Scholar
  100. Yu Q, Bauer JM, Moore JS, Beebe DJ (2001) Responsive biomimetic hydrogel valve for microfluidics. Appl Phys Lett 78(17):2589–2591Google Scholar
  101. Yue GE, Roper MG, Jeffery ED, Easley CJ, Balchunas C, Landers JP, Ferrance JP (2005) Glass microfluidic devices with thin membrane voltage junctions for electrospray mass spectrometry. Lab Chip 5(6):619–627Google Scholar
  102. Zaltzman B, Rubinstein I (2007) Electro-osmotic slip and electroconvective instability. J Fluid Mech 579:173–226zbMATHMathSciNetGoogle Scholar
  103. Zhou KM, Kovarik ML, Jacobson SC (2008) Surface-charge induced ion depletion and sample stacking near single nanopores in microfluidic devices. J Am Chem Soc 130(27):8614–8616Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Institute of Medical and Biological Engineering, Medical Research CenterSeoul National UniversitySeoulSouth Korea
  2. 2.Department of ChemistrySeoul National UniversitySeoulSouth Korea
  3. 3.Department of Biomedical Engineering, College of MedicineSeoul National UniversitySeoulSouth Korea

Personalised recommendations