Microfluidics and Nanofluidics

, Volume 7, Issue 1, pp 141–144

Temperature sensor using ferrofluid thin film

Short Communication

Abstract

A brand new design of temperature sensor using ferrofluid thin film is proposed in this paper. When magnetic field parallel to the plane of the ferrofluid thin film is applied, magnetic chains form in the same direction of the magnetic field, which results in the suppressing of optical transmission. It is observed that the optical transmission is changed by the ambient temperature, so that temperature sensor can be constructed by measuring the transmission power of a laser. The physics and the sensitivity of the temperature sensor are also analyzed.

Keywords

Temperature sensor Ferrofluid Magnetic chains Optical transmission Sensitivity 

References

  1. Henry DM, Herringer JH, Djeu N (1999) Response of 1.6 μm Er:Y3Al5O12 fiber-optic temperature sensor up to 1520 K. Phys Appl Lett 74:23Google Scholar
  2. Horng H-E, Hong CY, Yeung WB, Yang HC (1998) Magnetochromatic effects in magnetic fluid thin films. Appl Opt 37:2674CrossRefGoogle Scholar
  3. Horng H-E, Yang SY, Lee SL, Hong CY, Yang HC (2001) Magnetochromatics of the magnetic fluid film under a dynamic magnetic field. Appl Phys Lett 79:350CrossRefGoogle Scholar
  4. Jha CM, Bahl G, Melamud R, Chandorkar SA, Hopcroft MA, Kim B, Agarwal M, Salvia J, Mehta H, Kenny TW (2007) High resolution microresonator-based digital temperature sensor. Appl Phys Lett 91:074101CrossRefGoogle Scholar
  5. Luo W, Du T, Huang J (1999a) Novel convective instabilities in a magnetic fluid. Phys Rev Lett 82:4134CrossRefGoogle Scholar
  6. Luo W, Du T, Huang J (1999b) Field-induced instabilities in a magnetic fluid. J Magn Magn Mater 201:88CrossRefGoogle Scholar
  7. Moreira MF, Carvalho ICS, Cao W, Bailey C, Taheri B, Palffy-Muhoray P (2004) Cholesteric liquid-crystal laser as an optic fiber-based temperature sensor. Appl Phys Lett 85:14CrossRefGoogle Scholar
  8. Pu S, Chen X, Chen Y, Liao W, Chen L, Xia Y (2005) Measurement of the refractive index of a magnetic fluid by the retroreflection on the fiber-optic end face. Appl Phys Lett 86:171904CrossRefGoogle Scholar
  9. Pu S, Chen X, Chen Y, Xu Y, Liao W, Chen L, Xia Y (2006) Fiber-optic evanescent field modulator using a magnetic fluid as the cladding. J Appl Phys 99:093516CrossRefGoogle Scholar
  10. Pu S, Chen X, Di Z, Xia Y (2007) Relaxation property of the magnetic-fluid-based fiber-optic evanescent field modulator. J Appl Phys 101:053532CrossRefGoogle Scholar
  11. Shenping Li, Chan KT (1998) Optical fiber temperature sensor using a gain-switched Fabry–Perot semiconductor laser self-seeded from a linearly chirped fiber Bragg grating. Appl Phys Lett 73:23Google Scholar
  12. Smith CW, Gisser DG, Young M, Powers SR Jr (1974) Laser emission at 1.065 μm from neodymium-doped anhydrous cerium trichloride at room temperature. Appl Phys Lett 24:10CrossRefGoogle Scholar
  13. Taketomi Susamu, Ukita Masakazu, Mizukami Masaki, Miyajima Hideki, Chikazumi Soshin (1987) Magnetooptical effects of magnetic fluid. Jpn J Appl Phys 56:3362Google Scholar
  14. Yang SY, Chiu YP, Jeang BY, Horng HE, Hong CY, Yang HC (2001) Origin of field-dependent optical transmission of magnetic fluid films. Appl Phys Lett 79:2372CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Dongchen Zhang
    • 1
  • Ziyun Di
    • 1
  • Yun Zou
    • 1
  • Xianfeng Chen
    • 1
  1. 1.Department of Physics, The State Key Laboratory on Fiber Optic Local Area Communication Networks and Advanced Optical Communication SystemsShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations