Experiments on opto-electrically generated microfluidic vortices

  • Aloke Kumar
  • Stuart J. Williams
  • Steven T. WereleyEmail author
Research Paper


Strong microfluidic vortices are generated when a near-infrared (1,064 nm) laser beam is focused within a microchannel and an alternating current (AC) electric field is simultaneously applied. The electric field is generated from a parallel-plate, indium tin oxide (ITO) electrodes separated by 50 μm. We present the first μ-PIV analysis of the flow structure of such vortices. The vortices exhibit a sink-type behavior in the plane normal to the electric field and the flow speeds are characterized as a function of the electric field strength and biasing AC signal frequency. At a constant AC frequency of 100 kHz, the fluid velocity increases as the square of the electric field strength. At constant electric field strength fluid velocity does not change appreciably in the 30–50 kHz range and it decreases at larger frequencies (>1 MHz) until at approximately 5 MHz when Brownian motion dominates the movement of the 300 nm μ-PIV tracer particles. Presence of strongly focused laser beams in an interdigitated-electrode configuration can also lead to strong microfluidic vortices. When the center of the illumination is focused in the middle of an electrode strip, particles experiencing negative dielectrophoresis are carried towards the illumination and aggregate in this area.


MicroTAS Opto-electrostatic micro vortex Micropump Electrohydrodynamics Dielectrophoresis 



We would like to acknowledge support from NSF Grant CMMI-0654031. Aloke Kumar acknowledges partial support from the Adelberg Fellowship, Purdue University. S.J.W. acknowledges support under a National Science Foundation Graduate Research Fellowship.


  1. Ajdari A (2000) Pumping liquids using asymmetric electrode arrays. Phys Rev E 61:R45–R48CrossRefGoogle Scholar
  2. Ashkin A (1997) Optical trapping and manipulation of neutral particles using lasers. Proc Natl Acad Sci USA 94:4853–4860CrossRefGoogle Scholar
  3. Ashkin A, Dziedzic JM, Yamane T (1987) Optical trapping and manipulation of single cells using infrared-laser beams. Nature 330:769–771CrossRefGoogle Scholar
  4. Chakraborty S (2008) Electrothermal effects. Encyclopedia of Microfluidics and Nanofluidics. L. Dongqing, Springer, BerlinGoogle Scholar
  5. Chiou PY, Ohta AT, Wu MC (2005) Massively parallel manipulation of single cells and microparticles using optical images. Nature 436:370–372CrossRefGoogle Scholar
  6. Curtin DM, Newport DT, Davies MR (2006) Utilising μ-PIV and pressure measurements to determine the viscosity of a DNA solution in a microchannel. Exp Thermal Fluid Sci 30:843–852CrossRefGoogle Scholar
  7. Figeys D, Pinto D (2000) Lab-on-a-chip: a revolution in biological and medical sciences. Anal Chem 72:330A–335ACrossRefGoogle Scholar
  8. Fuhr G, Schnelle T, Müller T, Hitzler H, Monajembashi S, Greulich KO (1998) Force measurements of optical tweezers in electro-optical cages. Appl Phys a-Mat Sci Process 67:385–390CrossRefGoogle Scholar
  9. Green NG, Ramos A, Gonzalez A, Castellanos A, Morgan H (2000) Electric field induced fluid flow on microelectrodes: the effect of illumination. J Phys D Appl Phys 33:L13–L17CrossRefGoogle Scholar
  10. Green NG, Ramos A, Gonzalez A, Castellanos A, Morgan H (2001) Electrothermally induced fluid flow on microelectrodes. J Electrostat 53:71–87CrossRefGoogle Scholar
  11. Gui L, Merzkirch W (1998) Generating arbitrarily sized interrogation windows for correlation-based analysis of particle image velocimetry recordings. Exp Fluids 24:66–69CrossRefGoogle Scholar
  12. Hwang H, Oh Y, Kim JJ, Choi W, Park JK, Kim SH, Jang J (2008) Reduction of nonspecific surface-particle interactions in optoelectronic tweezers. Appl Phys Lett 92:024108–024110CrossRefGoogle Scholar
  13. Inouâe S, Spring KR (1997) Video microscopy: the fundamentals. Plenum Press, New YorkGoogle Scholar
  14. Jones TB (1995) Electromechanics of particles. Cambridge University Press, CambridgeGoogle Scholar
  15. Koch M, Evans A, Brunnschweiler A (2000) Microfluidic technology and applications. Research Studies Press, BaldockGoogle Scholar
  16. Kumar A, Ewing AH, Wereley ST (2008) Optical tweezers for manipulating cells and particles. Encyclopedia of Microfluidics and Nanofluidics. L. Dongqing, Springer, BerlinGoogle Scholar
  17. Luo R, Sun YF, Peng XF, Yang XY (2006a) Tracking sub-micron fluorescent particles in three dimensions with a microscope objective under non-design optical conditions. Meas Sci Technol 17(6):1358–1366CrossRefGoogle Scholar
  18. Luo R,Yang XY, Peng XF, Sun YF (2006b) Three-dimensional tracking of fluorescent particles applied to micro-fluidic measurements. J Micromech Microeng (16)8:1689–1699CrossRefGoogle Scholar
  19. Meinhart CD, Wereley ST, Gray MHB (2000) Volume illumination for two-dimensional particle image velocimetry. Meas Sci Technol 11:809–814CrossRefGoogle Scholar
  20. Mizuno A, Nishioka M, Ohno Y, Dascalescu LD (1995) Liquid microvortex generated around a laser focal point in an intense high-frequency electric-field. IEEE Trans Ind Appl 31:464–468CrossRefGoogle Scholar
  21. Morgan H, Green NG (2003) AC electrokinetics: colloids and nanoparticles. Research Studies Press, PhiladelphiaGoogle Scholar
  22. Müller T, Gerardino A, Schnelle T, Shirley SG, Bordoni F, DeGasperis G, Leoni R, Fuhr G (1996) Trapping of micrometre and sub-micrometre particles by high-frequency electric fields and hydrodynamic forces. J Phys D Appl Phys 29:340–349CrossRefGoogle Scholar
  23. Nakano M, Katsura S, Touchard GG, Takashima K, Mizuno A (2007) Development of an optoelectrostatic micropump using a focused laser beam in a high-frequency electric field. IEEE Trans Ind Appl 43:232–237CrossRefGoogle Scholar
  24. Papagiakoumou E, Pietreanu D, Makropoulou MI, Kovacs E, Serafetinides AA (2006) Evaluation of trapping efficiency of optical tweezers by dielectrophoresis. J Biomed Opt 11:014035-014031–014035-014037.Google Scholar
  25. Pickard JE, Pries AR, Ley K (2006) Micro-PIV measurement of flow fields around adherent leukocytes. FASEB J 20:A1322–A1322Google Scholar
  26. Pohl HA (1978) Dielectrophoresis: the behavior of neutral matter in nonuniform electric fields. Cambridge University Press, CambridgeGoogle Scholar
  27. Ramos A, Morgan H, Green NG, Castellanos A (1998) Ac electrokinetics: a review of forces in microelectrode structures. J Phys D Appl Phys 31:2338–2353CrossRefGoogle Scholar
  28. Reichle C, Schnelle T, Müller T, Leya T, Fuhr G (2000) A new microsystem for automated electrorotation measurements using laser tweezers. Biochim Biophys Acta Bioenerg 1459:218–229CrossRefGoogle Scholar
  29. Reichle C, Sparbier K, Müller T, Schnelle T, Walden P, Fuhr G (2001) Combined laser tweezers and dielectric field cage for the analysis of receptor-ligand interactions on single cells. Electrophoresis 22:272–282CrossRefGoogle Scholar
  30. Rowe AD, Leake MC, Morgan H, Berry RM (2003) Rapid rotation of micron and submicron dielectric particles measured using optical tweezers. J Modern Optics 50:1539–1554Google Scholar
  31. Santiago JG, Wereley ST, Meinhart CD, Beebe DJ, Adrian RJ (1998) A particle image velocimetry system for microfluidics. Exp Fluids 25:316–319CrossRefGoogle Scholar
  32. Schnelle T, Müller T, Reichle C, Fuhr G (2000) Combined dielectrophoretic field cages and laser tweezers for electrorotation. Appl Phys B 70:267–274CrossRefGoogle Scholar
  33. Simpson GJ, Wilson CF, Gericke KH, Zare RN (2002) Coupled electrorotation: two proximate microspheres spin in registry with an AC electric field. Chemphyschem 3:416–423CrossRefGoogle Scholar
  34. Trau M, Saville DA, Aksay IA (1997) Assembly of colloidal crystals at electrode interfaces. Langmuir 13:6375–6381CrossRefGoogle Scholar
  35. Wereley ST, Gui L, Meinhart CD (2002) Advanced algorithms for microscale particle image velocimetry. AIAA J 40:1047–1055CrossRefGoogle Scholar
  36. Wereley ST, Meinhart CD (2001) Second-order accurate particle image velocimetry. Exp Fluids 31:258–268CrossRefGoogle Scholar
  37. Wu M, Roberts JW, Buckley M (2005) Three-dimensional fluorescent particle tracking at micron-scale using a single camera. Exp Fluids 38(4):461–465CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Aloke Kumar
    • 1
  • Stuart J. Williams
    • 1
  • Steven T. Wereley
    • 1
    Email author
  1. 1.Birck Nanotechnology Center and School of Mechanical EngineeringPurdue UniversityWest LafayetteUSA

Personalised recommendations