Advertisement

Microfluidics and Nanofluidics

, Volume 6, Issue 4, pp 489–498 | Cite as

Momentum transfer to nanoobjects between isothermal parallel plates

  • Steffen HardtEmail author
  • Sudarshan Tiwari
  • Axel Klar
Research Paper

Abstract

A small-scale, trapezoidal rigid body in the gas-filled gap between two parallel plates at different temperatures is considered. An analytical expression for the thermally induced force onto the body in the direction parallel to the plates valid for an infinite Knudsen number is derived. For this purpose, diffuse reflection of the gas molecules at the solid walls is assumed. Simultaneously, Monte Carlo simulations are performed allowing an extension of the analysis to Knudsen numbers of the order of one. The numerical and the analytical results show excellent agreement, indicating that a temperature gradient orthogonal to the plates can induce a significant force in parallel direction, a phenomenon without analogy in the macroworld. This force is only slightly reduced when a Knudsen number of one is considered. In addition to the diffuse-reflection boundary condition, a mixture of diffuse and specular reflection is studied. The practical relevance of the results is exemplified by considering two scenarios with bodies of a specific geometry, among others a nanoscopic platelet.

Keywords

Gas dynamics Nanofluidics Thermophoresis Monte Carlo simulation 

References

  1. Babovsky H (1989) A convergence proof for Nanbu’s Boltzmann simulation scheme. Eur J Mech B 8:41zbMATHMathSciNetGoogle Scholar
  2. Barker JA, Auerbach DJ (1985) Gas-surface interactions and dynamics; thermal energy atomic and molecular beam studies. Surf Sci Rep 4:1CrossRefGoogle Scholar
  3. Bird GA (1976) Molecular gas dynamics. Clarendon Press, OxfordGoogle Scholar
  4. Cercignani C (1975) Theory and application of the Boltzmann equation. Scottish Academic Press, Edinburgh zbMATHGoogle Scholar
  5. Cercignani C (2000) Rarified gas dynamics: from basic concepts to actual calculations. Cambridge University Press, CambridgeGoogle Scholar
  6. Cercignani C, Lampis M (1971) Kinetic models for gas-surface interactions. Transp Theory Stat Phys 1:101zbMATHCrossRefMathSciNetGoogle Scholar
  7. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183CrossRefGoogle Scholar
  8. Jinesh KB, Frenken JWM (2006) Capillary condensation in atomic scale friction: how water acts like a glue. Phys Rev Lett 96:166103CrossRefGoogle Scholar
  9. Karniadakis G, Beskok A, Aluru N (2005) Microflows and Nanoflows, Sect. 2.2.2. Springer, New YorkGoogle Scholar
  10. Lord RG (1991) Some extensions to the Cercignani–Lampis gas-surface scattering kernel. Phys. Fluids A 3:706zbMATHCrossRefGoogle Scholar
  11. Modest MF (2003) Radiative heat transfer, Chap 4. Academic Press, San DiegoGoogle Scholar
  12. Neunzert H, Struckmeier J (1995) Acta numerica. Cambridge University Press, CambridgeGoogle Scholar
  13. Raviv U, Perkin S, Laurat P, Klein J (2004) Fluidity of water confined down to subnanometer films. Langmuir 20:5322CrossRefGoogle Scholar
  14. Reynolds O (1879) On certain dimensional properties of matter in the gaseous state. Phil Trans R Soc Lond 170:727CrossRefGoogle Scholar
  15. Sharipov F (1994a) Onsager-Casimir reciprocity relations for open gaseous systems at arbitrary rarefaction: I. General theory for single gas. Physica A 203:437CrossRefMathSciNetGoogle Scholar
  16. Sharipov F (1994b) Onsager-Casimir reciprocity relations for open gaseous systems at arbitrary rarefaction: II. Application of the theory for single gas. Physica A 203:457CrossRefMathSciNetGoogle Scholar
  17. Urbakh M, Klafter J, Gourdon D, Israelachvili J (2004) The nonlinear nature of friction. Nature 430:525CrossRefGoogle Scholar
  18. Waldmann L (1959) Über die Kraft eines inhomogenen Gases auf kleine suspendierte Kugeln. Z Naturforsch A 14a:589MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Institut für Nano- und MikroprozesstechnikLeibniz Universität HannoverHannoverGermany
  2. 2.Fachbereich MathematikTU KaiserslauternKaiserslauternGermany

Personalised recommendations