Advertisement

Microfluidics and Nanofluidics

, Volume 5, Issue 4, pp 425–442 | Cite as

Methods for probing water at the nanoscale

  • Jason Knowles HoltEmail author
Review

Abstract

A review of selected experimental and modeling techniques that have been applied to study water structure and dynamics will be presented. Many of these techniques provide atomic and molecular level detail about water and are thus relevant to nanofluidics. Given the wealth of simulations and recent experimental reports on water confinement in carbon nanotubes, many of the examples provided will focus on this unique system. Finally, some perspectives on the picture of water that has emerged from these various studies will be offered.

Keywords

Carbon nanotubes Nanofluidics Water structure Flow simulations 

Notes

Acknowledgments

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. This work was supported in part by a Laboratory-Directed Research and Development Award from Lawrence Livermore National Laboratory.

References

  1. Agmon N (1995) The Grotthuss mechanism. Chem Phys Lett 244:456–462CrossRefGoogle Scholar
  2. Agre P, MacKinnon R (2003) Information for the public. The Nobel Prize in Chemistry 2003, © The Nobel FoundationGoogle Scholar
  3. Agre P (2004) Aquaporin water channels (Nobel lecture). Angewandte Chemie (international edition) 43:4278–4290CrossRefGoogle Scholar
  4. Atkitt JW, Mann BE (2000) NMR and chemistry: an introduction to modern NMR spectroscopy. CRC Press, West Palm BeachGoogle Scholar
  5. Bai JE, Wang J, Zeng XC (2006) Multiwalled ice helixes and ice nanotubes. Proc Nat Acad Sci USA 103:19664–19667CrossRefGoogle Scholar
  6. Berezhkovskii A, Hummer G (2002) Single-file transport of water molecules through a carbon nanotube. Phys Rev Lett 89:064503CrossRefGoogle Scholar
  7. Bergmann U, Wernet P, Glatzel P, Cavalleri M, Pettersson LGM, Nilsson A, Cramer SP (2002) X-ray Raman spectroscopy at the oxygen K edge of water and ice: implications on local structure models. Phys Rev B 66:092107CrossRefGoogle Scholar
  8. Chen J, Hamon MA, Hu H, Chen YS, Rao AM, Eklund PC, Haddon RC (1998) Solution properties of single-walled carbon nanotubes. Science 282:95–98CrossRefGoogle Scholar
  9. Cowan ML, Bruner BD, Huse N, Dwyer JR, Chugh B, Nibbering ETJ, Elsaesser T, Miller RJD (2005) Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O. Nature 434:199–202CrossRefGoogle Scholar
  10. Dellago C, Hummer G (2006) Kinetics and mechanism of proton transport across membrane nanopores. Phys Rev Lett 97:245901CrossRefGoogle Scholar
  11. Doyle DA, Cabral JM, Pfuetzner RA, Kuo AL, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69–77CrossRefGoogle Scholar
  12. Dyke CA, Tour JM (2004) Covalent functionalization of single-walled carbon nanotubes for materials applications. J Phys Chem A 108:11151–11159CrossRefGoogle Scholar
  13. Eijkel JCT, van den Berg A (2005) Nanofluidics: what is it and what can we expect from it? Microfluid Nanofluid 1:249–267CrossRefGoogle Scholar
  14. Fan R, Wu YY, Li DY, Yue M, Majumdar A, Yang PD (2003) Fabrication of silica nanotube arrays from vertical silicon nanowire templates. J Am Chem Soc 125:5254–5255CrossRefGoogle Scholar
  15. Fecko CJ, Eaves JD, Loparo JJ, Tokmakoff A, Geissler PL (2003) Ultrafast hydrogen bond dynamics in the infrared spectroscopy of water. Science 301:1698–1702CrossRefGoogle Scholar
  16. Gale GM, Gallot G, Hache F, Lascoux N, Bratos S, Leicknam JC (1999) Femtosecond dynamics of hydrogen bonds in liquid water: a real-time study. Phys Rev Lett 82:1068–1071CrossRefGoogle Scholar
  17. Ghosh S, Ramanathan KV, Sood AK (2004) Water at nanoscale confined in single-walled carbon nanotubes studied by NMR. Europhys Lett 65:678–684CrossRefGoogle Scholar
  18. Gordillo MC, Marti J (2000) Hydrogen bond structure of liquid water confined in nanotubes. Chem Phys Lett 329:341–345CrossRefGoogle Scholar
  19. Guillot B (2002) A reappraisal of what we have learnt during three decades of computer simulations on water. J Mol Liquid 101:219–260CrossRefGoogle Scholar
  20. Hanasaki I, Nakatani A (2006) Flow structure of water in carbon nanotubes: Poiseuille type or plug-like? J Chem Phys 124:144708CrossRefGoogle Scholar
  21. Hargittai I (1988). Part A: the electron diffraction technique. In: Hargittai I, Hargittai M (eds) Stereochemical applications of gas-phase electron diffraction. VCH, New YorkGoogle Scholar
  22. Head-Gordon T, Hura G (2002) Water structure from scattering experiments and simulation. Chem Rev 102:2651–2669CrossRefGoogle Scholar
  23. Head-Gordon T, Johnson ME (2006) Tetrahedral structure or chains for liquid water. Proc Natl Acad Sci USA 103:16614–16614Google Scholar
  24. Hinds BJ, Chopra N, Rantell T, Andrews R, Gavalas V, Bachas LG (2004) Aligned multiwalled carbon nanotube membranes. Science 303:62–65CrossRefGoogle Scholar
  25. Holt JK, Noy A, Huser T, Eaglesham D, Bakajin O (2004) Fabrication of a carbon nanotube-embedded silicon nitride membrane for studies of nanometer-scale mass transport. Nano Lett 4:2245–2250CrossRefGoogle Scholar
  26. Holt JK, Park HG, Wang YM, Stadermann M, Artyukhin AB, Grigoropoulos CP, Noy A, Bakajin O (2006) Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312:1034–1037CrossRefGoogle Scholar
  27. Hummer G, Rasaiah JC, Noworyta JP (2001) Water conduction through the hydrophobic channel of a carbon nanotube. Nature 414:188–190CrossRefGoogle Scholar
  28. Hura G, Sorenson JM, Glaeser RM, Head-Gordon T (2000) A high-quality X-ray scattering experiment on liquid water at ambient conditions. J Chem Phys 113:9140–9148CrossRefGoogle Scholar
  29. Jessel TMK, Eric R, Schwartz, James H. (2000) Principles of neural science. Ion channels, chapter 6. McGraw-Hill, New York, pp 105–124Google Scholar
  30. Joseph S, Aluru NR (2008) Why are carbon nanotubes fast transporters of water? Nano Lett 8:452–458CrossRefGoogle Scholar
  31. Kalra A, Garde S, Hummer G (2003) Osmotic water transport through carbon nanotube membranes. Proc Natl Acad Sci USA 100:10175–10180CrossRefGoogle Scholar
  32. Karnicky JF, Pings CJ (1976). Recent advances in the study of liquids by X-ray diffraction. In: Prigogine I, Rice SA (eds) Advances in chemical physics. Wiley, New YorkGoogle Scholar
  33. King WE, Campbell GH, Frank A, Reed B, Schmerge JF, Siwick BJ, Stuart BC, Weber PM (2005) Ultrafast electron microscopy in materials science, biology, and chemistry. J Appl Phys 97:1–27CrossRefGoogle Scholar
  34. Koga K, Gao GT, Tanaka H, Zeng XC (2001) Formation of ordered ice nanotubes inside carbon nanotubes. Nature 412:802–805CrossRefGoogle Scholar
  35. Kolesnikov AI, Zanotti JM, Loong CK, Thiyagarajan P, Moravsky AP, Loutfy RO, Burnham CJ (2004) Anomalously soft dynamics of water in a nanotube: a revelation of nanoscale confinement. Phys Rev Lett 93:035503CrossRefGoogle Scholar
  36. Koplik J, Banavar JR (1995) Continuum deductions from molecular hydrodynamics. Annu Rev Fluid Mech 27:257–292CrossRefGoogle Scholar
  37. Kotsalis EM, Walther JH, Koumoutsakos P (2004) Multiphase water flow inside carbon nanotubes. Int J Multiphase Flow 30:995–1010zbMATHCrossRefGoogle Scholar
  38. Koumoutsakos P, Zimmerli U, Werder T, Walther JH (2004). Nanoscale fluid mechanics, In: Lakhtakia A (ed) Handbook of nanotechnology: nanometer structure theory, modeling, and simulation. ASME Press, New YorkGoogle Scholar
  39. Landau EM, Rosenbusch JP (1996) Lipidic cubic phases: a novel concept for the crystallization of membrane proteins. Proc Natl Acad Sci USA 93:14532–14535CrossRefGoogle Scholar
  40. Leythaeuser D, Schaefer RG, Yukler A (1980) Diffusion of light hydrocarbons through near-surface rocks. Nature 284:522–525CrossRefGoogle Scholar
  41. Li JY, Gong XJ, Lu HJ, Li D, Fang HP, Zhou RH (2007) Electrostatic gating of a nanometer water channel. Proc Natl Acad Sci USA 104:3687–3692CrossRefGoogle Scholar
  42. Libera J, Gogotsi Y (2001) Hydrothermal synthesis of graphite tubes using Ni catalyst. Carbon 39:1307–1318CrossRefGoogle Scholar
  43. Ludwig R (2001) Water: from clusters to the bulk. Angewandte Chemie (international edition) 40:1808–1827CrossRefGoogle Scholar
  44. Majumder M, Chopra N, Andrews R, Hinds BJ (2005) Nanoscale hydrodynamics —enhanced flow in carbon nanotubes. Nature 438:44CrossRefGoogle Scholar
  45. Maniwa Y, Kataura H, Abe M, Udaka A, Suzuki S, Achiba Y, Kira H, Matsuda K, Kadowaki H, Okabe Y (2005) Ordered water inside carbon nanotubes: formation of pentagonal to octagonal ice-nanotubes. Chem Phys Lett 401:534–538CrossRefGoogle Scholar
  46. Mann DJ, Halls MD (2003) Water alignment and proton conduction inside carbon nanotubes. Phys Rev Lett 90:195503CrossRefGoogle Scholar
  47. Mao SH, Kleinhammes A, Wu Y (2006) NMR study of water adsorption in single-walled carbon nanotubes. Chem Phys Lett 421:513–517CrossRefGoogle Scholar
  48. Matsuda K, Hibi T, Kadowaki H, Kataura H, Maniwa Y (2006) Water dynamics inside single-wall carbon nanotubes: NMR observations. Phys Rev B 74:073415CrossRefGoogle Scholar
  49. Mattia D, Rossi M, Ye H, Gogotsi Y (2007). In situ fluid studies in carbon nanotubes with diameters ranging from 1 to 500 nm. In: 5th IASME/WSEAS international conference on fluid mechanics and aerodynamics, Athens, Greece, pp. 294–296Google Scholar
  50. Morgan J, Warren BE (1938) X-ray analysis of the structure of water. J Chem Phys 6:666–673CrossRefGoogle Scholar
  51. Murata K, Mitsuoka K, Hirai T, Walz T, Agre P, Heymann JB, Engel A, Fujiyoshi Y (2000) Structural determinants of water permeation through aquaporin-1. Nature 407:599–605CrossRefGoogle Scholar
  52. Myneni S, Luo Y, Naslund LA, Cavalleri M, Ojamae L, Ogasawara H, Pelmenschikov A, Wernet P, Vaterlein P, Heske C, Hussain Z, Pettersson LGM, Nilsson A (2002) Spectroscopic probing of local hydrogen-bonding structures in liquid water. J Phys Condens Matter 14:L213–L219CrossRefGoogle Scholar
  53. Naguib N, Ye HH, Gogotsi Y, Yazicioglu AG, Megaridis CM, Yoshimura M (2004) Observation of water confined in nanometer channels of closed carbon nanotubes. Nano Lett 4:2237–2243CrossRefGoogle Scholar
  54. Narten AH, Thiessen WE, Blum L (1982) Atom pair distribution-functions of liquid water at 25-degrees-C from neutron diffraction. Science 217:1033–1034CrossRefGoogle Scholar
  55. Newville M (2004). Fundamentals of XAFS, Chicago. University of Chicago, Chicago, p. 37Google Scholar
  56. Nilsson A, Wernet P, Nordlund D, Bergmann U, Cavalleri M, Odelius M, Ogasawara H, Naslund LA, Hirsch TK, Glatzel P, Pettersson LGM (2005) Comment on “Energetics of hydrogen bond network: rearrangements in liquid water”. Science 308:793ACrossRefGoogle Scholar
  57. Ohkubo T, Konishi T, Hattori Y, Kanoh H, Fujikawa T, Kaneko K (2002) Restricted hydration structures of Rb and Br ions confined in slit-shaped carbon nanospace. J Am Chem Soc 124:11860–11861CrossRefGoogle Scholar
  58. Ohtaki H, Radnai T (1993) Structure and dynamics of hydrated ions. Chem Rev 93:1157–1204CrossRefGoogle Scholar
  59. Page DI (1972). Chapter 9. In: Frank F (ed) Water, a comprehensive treatise. Plenum Press, New York, pp 333–362Google Scholar
  60. Parravano C, Baldeschweiler JD, Boudart M (1967) Diffusion of water in zeolites. Science 155:1535CrossRefGoogle Scholar
  61. Persson BNJ (2000) Sliding friction: physical principles and applications. Springer, HeidelbergzbMATHGoogle Scholar
  62. Riegelman M, Liu H, Bau HH (2006) Controlled nanoassembly and construction of nanofluidic devices. J Fluid Eng Trans Asme 128:6–13CrossRefGoogle Scholar
  63. Ruan CY, Lobastov VA, Vigliotti F, Chen SY, Zewail AH (2004a) Ultrafast electron crystallography of interfacial water. Science 304:80–84CrossRefGoogle Scholar
  64. Ruan CY, Lobastov VA, Vigliotti F, Chen SY, Zewail AH (2004b) Unpublished workGoogle Scholar
  65. Rullmann JAC, Vanduijnen PT (1988) A polarizable water model for calculation of hydration energies. Mol Phys 63:451–475CrossRefGoogle Scholar
  66. Sekhaneh W, Kotecha M, Dettlaff-Weglikowska U, Veeman WS (2006) High resolution NMR of water absorbed in single-wall carbon nanotubes. Chem Phys Lett 428:143–147CrossRefGoogle Scholar
  67. Shiomi J, Kimura T, Maruyama S (2007) Molecular dynamics of ice-nanotube formation inside carbon nanotubes. J Phys Chem C 111:12188–12193CrossRefGoogle Scholar
  68. Smith JD, Cappa CD, Wilson KR, Messer BM, Cohen RC, Saykally RJ (2004) Energetics of hydrogen bond network rearrangements in liquid water. Science 306:851–853CrossRefGoogle Scholar
  69. Smith JD, Cappa CD, Messer BM, Cohen RC, Saykally RJ (2005a) Response to comment on “Energetics of hydrogen bond network: rearrangements in liquid water”. Science 308:793BCrossRefGoogle Scholar
  70. Smith JD, Cappa CD, Wilson KR, Cohen RC, Geissler PL, Saykally RJ (2005b) Unified description of temperature-dependent hydrogen-bond rearrangements in liquid water. Proc Natl Acad Sci USA 102:14171–14174CrossRefGoogle Scholar
  71. Soper AK, Bruni F, Ricci MA (1997) Site–site pair correlation functions of water from 25 to 400 degrees C: revised analysis of new and old diffraction data. J Chem Phys 106:247–254CrossRefGoogle Scholar
  72. Soper AK (2000) The radial distribution functions of water and ice from 220 to 673 K and at pressures up to 400 MPa. Chem Phys 258:121–137CrossRefGoogle Scholar
  73. Sprik M, Klein ML (1988) A polarizable model for water using distributed charge sites. J Chem Phys 89:7556–7560CrossRefGoogle Scholar
  74. Srinivasan R, Lobastov VA, Ruan CY, Zewail AH (2003) Ultrafast electron diffraction (UED)—a new development for the 4D determination of transient molecular structures. Helvetica Chimica Acta 86:1763–1838CrossRefGoogle Scholar
  75. Stallmach F, Karger J, Krause C, Jeschke M, Oberhagemann U (2000) Evidence of anisotropic self-diffusion of guest molecules in nanoporous materials of MCM-41 type. J Am Chem Soc 122:9237–9242CrossRefGoogle Scholar
  76. Stejskal EO, Tanner JE (1965) Spin diffusion measurements—spin echoes in presence of a time-dependent field gradient. J Chem Phys 42:288CrossRefGoogle Scholar
  77. Stillinger FH (1980) Water revisited. Science 209:451–457CrossRefGoogle Scholar
  78. Tohji K, Udagawa Y (1989) X-ray Raman-scattering as a substitute for soft-X-ray extended X-ray absorption fine structure. Phys Rev B 39:7590–7594CrossRefGoogle Scholar
  79. Tokmakoff A (2007) Shining light on the rapidly evolving structure of water. Science 317:54–55CrossRefGoogle Scholar
  80. Waghe A, Rasaiah JC, Hummer G (2002) Filling and emptying kinetics of carbon nanotubes in water. J Chem Phys 117:10789–10795CrossRefGoogle Scholar
  81. Wallen SL, Palmer BJ, Pfund DM, Fulton JL, Newville M, Ma YJ, Stern EA (1997) Hydration of bromide ion in supercritical water: an X-ray absorption fine structure and molecular dynamics study. J Phys Chem A 101:9632–9640CrossRefGoogle Scholar
  82. Wernet P, Nordlund D, Bergmann U, Cavalleri M, Odelius M, Ogasawara H, Naslund LA, Hirsch TK, Ojamae L, Glatzel P, Pettersson LGM, Nilsson A (2004) The structure of the first coordination shell in liquid water. Science 304:995–999CrossRefGoogle Scholar
  83. Wu S (1991). Pulsed field gradient nuclear magnetic resonance and applications in Y type zeolites, University of NebraskaGoogle Scholar
  84. Yang FQ (2007) Flow behavior of an Eyring fluid in a nanotube: the effect of the slip boundary condition. Appl Phys Lett 90:133105CrossRefGoogle Scholar
  85. Yazicioglu AG, Megaridis CM, Nicholls A, Gogotsi Y (2005) Electron microscope visualization of multiphase fluids contained in closed carbon nanotubes. J Vis 8:137–144CrossRefGoogle Scholar
  86. Ye H, Naguib N, Gogotsi Y (2004) TEM study of water in carbon nanotubes. JEOL News 39:38–43Google Scholar
  87. Yen TH, Soong CY, Tzeng PY (2007) Hybrid molecular dynamics-continuum simulation for nano/mesoscale channel flows. Microfluid Nanofluid 3:665–675CrossRefGoogle Scholar
  88. Yeremenko S, Pschenichnikov MS, Wiersma DA (2003) Hydrogen-bond dynamics in water explored by heterodyne-detected photon echo. Chem Phys Lett 369:107–113CrossRefGoogle Scholar
  89. Zubavicus Y, Grunze M (2004) New insights into the structure of water with ultrafast probes. Science 304:974–976CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Chemical Sciences Division, L-231Lawrence Livermore National LaboratoryLivermoreUSA

Personalised recommendations