Advertisement

Microfluidics and Nanofluidics

, Volume 5, Issue 5, pp 631–638 | Cite as

Formation of ionic depletion/enrichment zones in a hybrid micro-/nano-channel

  • Kuan-Da Huang
  • Ruey-Jen YangEmail author
Research Paper

Abstract

This study fabricates a cross-form microchip in which the two side channels are attached to the main channel via a nanochannel bridge. Ionic depletion and enrichment zones are established on the anodic and cathodic sides of the nanochannel. Results show that the low conductivity within the depletion zone induces a rapid electroosmotic flow, which in turn prompts the generation of vortex flow structures within the depletion zone. Both the lengthening of the depletion bulk charge layer and decrease in length of the diffusion layer as the applied voltage is increased are also demonstrated in this study.

Keywords

Concentration polarization Electroosmosis Nanofluidics Microfluidics 

Notes

Acknowledgments

The authors gratefully acknowledge the financial support provided to this study by the National Science Council of Taiwan under Grant no. NSC-96-2628-E-006-162-MY3.

Supplementary material

ESM1 (MPG 6940 kb)

ESM2 (MPG 5970 kb)

ESM3 (MPG 7273 kb)

References

  1. Ben Y, Chang HC (2002) Nonlinear Smoluchowski slip velocity and micro-vortex generation. J Fluid Mech 461:229–238zbMATHCrossRefMathSciNetGoogle Scholar
  2. Chang C-C, Yang R-J (2004) Computational analysis of electrokinetically driven flow mixing in microchannels with patterned blocks. J Micromech Microeng 14:550–558CrossRefGoogle Scholar
  3. Chen C-H, Lin H, Lele SK, Santiago JG (2005) Convective and absolute electrokinetic instability with conductivity gradients. J Fluid Mech 524:263–303zbMATHCrossRefGoogle Scholar
  4. Cheng L-J, Guo LJ (2007) Rectified ion transport through concentration gradient in homogeneous silica. Nanochannels. Nano Lett 7:3165–3171CrossRefGoogle Scholar
  5. Daiguji H, Yang P, Szeri AJ, Majumdar A (2004) Electrochemomechanical energy conversion in nanofluidic channels. Nano Lett 4:2315–2321CrossRefGoogle Scholar
  6. Dukhin SS (1991) Electrokinetic phenomena of the second kind and their applications. Adv Colloid Interface Sci 35:173–196CrossRefGoogle Scholar
  7. Dukhin SS, Mishchuk NA (1993) Intensification of electrodialysis based on electroosmosis of the second kind. J Memb Sci 79:199–210CrossRefGoogle Scholar
  8. Huang K-D, Yang R-J (2007) Electrokinetic behaviour of overlapped electric double layers in nanofluidic channels. Nanotech 18:115701CrossRefGoogle Scholar
  9. Hunter RJ (1981) Zeta potential in colloid science. Academic Press, New YorkGoogle Scholar
  10. Karnik R, Fan R, Yue M, Li D, Yang P, Majumdar A (2005) Electrostatic control of ions and molecules in nanofluidic transistors. Nano Lett 5:943–948CrossRefGoogle Scholar
  11. Kim SJ, Wang Y-C, Lee JH, Jang H, Han J (2007) Concentration polarization and nonlinear electrokinetic flow near a nanofluidic channel. Phys Rev Lett 99:044501CrossRefGoogle Scholar
  12. Kirby BJ, Hasselbrink Jr EF (2004) Zeta potential of microfluidic substrates: 1. theory, experimental techniques, and effects on separations. Electrophoresis 25:187–202CrossRefGoogle Scholar
  13. Kuo TC, Cannon Jr DM, Shannon MA, Bohn PW, Sweedler JV (2003) Hybrid three-dimensional nanofluidic/microfluidic devices using molecular gates. Sens Actuators A 102:223–233CrossRefGoogle Scholar
  14. Mishchuk NA (1999) The role of water dissociation in concentration polarization of disperse particles. Colloids Surf A 159:467–475CrossRefGoogle Scholar
  15. Pan Y-J, Lin J-J, Luo W-J, Yang R-J (2006) Sample flow switching techniques on microfluidic chips. Biosens Bioelectron 21:1644–1648CrossRefGoogle Scholar
  16. Plecis A, Schoch RB, Renaud P (2005) Ionic transport phenomena in nanofluidics: experimental and theoretical study of the exclusion-enrichment effect on a chip. Nano Lett 5:1147–1155CrossRefGoogle Scholar
  17. Probstein RF (1994) Physicochemical hydrodynamics: an introduction. Wiley, New YorkGoogle Scholar
  18. Pu Q, Yun J, Temkin H, Liu S (2004) Ion-enrichment and ion-depletion effect of nanochannel structures. Nano Lett 4:1099–1103CrossRefGoogle Scholar
  19. Rubinstein I, Shtilman L (1979) Voltage against current curves of cation exchange membranes. J Chem Soc Faraday Trans 75:231–246CrossRefGoogle Scholar
  20. Stein D, Kruithof M, Dekker C (2004) Surface-charge-governed ion transport in nanofluidic channels. Phys Rev Lett 93:035901CrossRefGoogle Scholar
  21. Takhistov P, Duginova K, Chang HC (2003) Electrokinetic mixing vortices due to electrolyte depletion at microchannel junctions. J Colloid Interface Sci 263:133–143CrossRefGoogle Scholar
  22. Wang Y-C, Stevens AL, Han J (2005) Million-fold preconcentration of proteins and peptides by nanofluidic filter. Anal Chem 77:4293–4299CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of Engineering ScienceNational Cheng Kung UniversityTainanTaiwan

Personalised recommendations