Microfluidics and Nanofluidics

, Volume 5, Issue 2, pp 145–174 | Cite as

Recent advances in microscale pumping technologies: a review and evaluation

Review

Abstract

Micropumping has emerged as a critical research area for many electronics and biological applications. A significant driving force underlying this research has been the integration of pumping mechanisms in micro total analysis systems and other multi-functional analysis techniques. Uses in electronics packaging and micromixing and microdosing systems have also capitalized on novel pumping concepts. The present work builds upon a number of existing reviews of micropumping strategies by focusing on the large body of micropump advances reported in the very recent literature. Critical selection criteria are included for pumps and valves to aid in determining the pumping mechanism that is most appropriate for a given application. Important limitations or incompatibilities are also addressed. Quantitative comparisons are provided in graphical and tabular forms.

Keywords

Micropump Microfluidic Fluid delivery Electronics cooling Biofluid 

Notes

Acknowledgments

The authors acknowledge financial support for this work from members of the Cooling Technologies Research Center (http://www.ecn.purdue.edu/CTRC), a National Science Foundation Industry/University Cooperative Research Center at Purdue University.

References

  1. Abdelgawad M, Hassan I, Esmail N, Phutthavong P (2005) Numerical investigation of multistage viscous micropump configurations. J Fluids Eng Trans ASME 127(4):734–742Google Scholar
  2. Al-Halhouli AT, Al-Salaymeh A, Kilani MI, Buttgenbach S (2007) Numerical investigation of the effect of spiral curvature on the flow field in a spiral channel viscous micropump. Microfluidics Nanofluidics 3(5):537–546Google Scholar
  3. Andersson H, Van den Berg A (2003) Microfluidic devices for cellomics: a review. Sensors Actuat B Chem 92(3):315Google Scholar
  4. Armani D, Liu C, Aluru N (1999) Re-configurable fluid circuits by PDMS elastomer micromachining. In: Proceedings of the IEEE micro electro mechanical systems (MEMS), Orlando, pp 222–227Google Scholar
  5. Astle AA, Kim HS, Bernal LP, Najafi K, Washabaugh PD (2007) Theoretical and experimental performance of a high frequency gas micropump. Sensors Actuat A Phys 134(1):245–256Google Scholar
  6. Bahadur V, Garimella SV (2006) An energy-based model for electrowetting-induced droplet actuation. J Micromech Microeng 16(8):1494–1503Google Scholar
  7. Bahadur V, Garimella SV (2007) Electrowetting-based control of static droplet states on rough surfaces. Langmuir 23(9):4918–4924Google Scholar
  8. Baroud CN, Delville J-P, Wunenburger R (2005) Laser-actuated microfluidic building blocks. In: Proceedings of SPIE—the international society for optical engineering, optical trapping and optical micromanipulation II, San Diego, vol 5930, pp 1–8Google Scholar
  9. Blanchard D, Ligrani P, Gale B (2005) Single-disk and double-disk viscous micropumps. Sensors Actuat A Phys 122(1 SPEC ISS):149–158Google Scholar
  10. Boden R, Lehto M, Simu U, Thornell G, Hjort K, Schweitz J-A (2006) A polymeric paraffin actuated high-pressure micropump. Sensors Actuat A Phys 127(1):88–93Google Scholar
  11. Brask A, Goranovic G, Jensen MJ, Bruus H (2005) A novel electro-osmotic pump design for nonconducting liquids: theoretical analysis of flow rate-pressure characteristics and stability. J Micromech Microeng 15(4):883–891Google Scholar
  12. Broderick SL, Webb BW, Maynes D (2005) Thermally developing electro-osmotic convection in microchannels with finite debye-layer thickness. Numer Heat Transfer A Appl 48(10):941–964Google Scholar
  13. Chang H-T, Lee C-Y, Wen C-Y (2007) Design and modeling of electromagnetic actuator in mems-based valveless impedance pump. Microsyst Technol 13(11–12):1615–1622Google Scholar
  14. Chen F, Li B, Sullivan TD, Gonzalez CL, Muzzy CD, Lee HK, Levy MD, Dashiell MW, Kolodzey J (2000) Influence of underlying interlevel dielectric films on extrusion formation in aluminum interconnects. J Vacuum Sci Technol B Microelectr Nanometer Struct 18(6):2826–2834Google Scholar
  15. Chen L, Wang H, Ma J, Wang C, Guan Y (2005a) Fabrication and characterization of a multi-stage electroosmotic pump for liquid delivery. Sensors Actuat B Chem 104(1):117–123Google Scholar
  16. Chen Z, Wang P, Chang H-C (2005b) An electro-osmotic micro-pump based on monolithic silica for micro-flow analyses and electro-sprays. Anal Bioanalyt Chem 382(3):817–824Google Scholar
  17. Chen SC, Cheng CH, Lin YC (2007) Analysis and experiment of a novel actuating design with a shear mode PZT actuator for microfluidic application. Sensors Actuat APhys 135(1):1–9Google Scholar
  18. Cozma A, Puers B (1995) Characterization of the electrostatic bonding of silicon and pyrex glass. J Micromech Microeng 5(2):98–102Google Scholar
  19. Cui Q, Liu C, Zha XF (2007) Study on a piezoelectric micropump for the controlled drug delivery system. Microfluidics Nanofluidics 3(4):377–390Google Scholar
  20. da Silva AK, Kobayashi MH, Coimbra CFM (2007) Optimal theoretical design of 2-D microscale viscous pumps for maximum mass flow rate and minimum power consumption. Int J Heat Fluid Flow 28(3):526–536Google Scholar
  21. Darabi J, Wang H (2005) Development of an electrohydrodynamic injection micropump and its potential application in pumping fluids in cryogenic cooling systems. J Microelectromech Syst 14(4):747–755Google Scholar
  22. Darabi J, Rada M, Ohadi M, Lawler J (2002) Design, fabrication, and testing of an electrohydrodynamic ion-drag micropump. J Microelectromech Syst 11(6):684–690Google Scholar
  23. Debesset S, Hayden CJ, Dalton C, Eijkel JCT, Manz A (2004) An AC electroosmotic micropump for circular chromatographic applications. Lab On A Chip 4:396–400Google Scholar
  24. Dissanayake DW, Tikka AC, Al-Sarawi SF, Abbott D (2007) Radio frequency controlled microvalve for biomedical applications. In: Proceedings of SPIE—the international society for optical engineering, Adelaide, Australia, 6413:64130DGoogle Scholar
  25. Doll A, Heinrichs M, Goldschmidtboeing F, Schrag HJ, Hopt UT, Woias P (2006) A high performance bidirectional micropump for a novel artificial sphincter system. Sensors Actuat A Phys 130–131:445–453Google Scholar
  26. Duffy DC, McDonald JC, Schueller OJA, Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Analyt Chem 70(23):4974–4984Google Scholar
  27. Duwairi H, Abdullah M (2007) Thermal and flow analysis of a magneto-hydrodynamic micropump. Microsyst Technol 13(1):33–39Google Scholar
  28. Eddings MA, Gale BK (2006) A PDMS-based gas permeation pump for on-chip fluid handling in microfluidic devices. J Micromech Microeng 16(11):2396–2402Google Scholar
  29. Fan B, Song G, Hussain F (2005) Simulation of a piezoelectrically actuated valveless micropump. Smart Mater Struct 14(2):400–405Google Scholar
  30. Fang J, Wang K, Bohringer KF (2006) Self-assembly of PZT actuators for micropumps with high process repeatability. J Microelectromech Syst 15(4):871–878Google Scholar
  31. Faulkner D, Ward C, Gilbuena D, Shekarriz R, Forster FK (2006) Fixed valve piezoelectric micropump for miniature thermal management module. In: Proceedings of ASME fluids engineering division summer meeting 2006, FEDSM2006, Miami, vol 2, pp 843–848Google Scholar
  32. Felten M, Geggier P, Jager M, Duschl C (2006) Controlling electrohydrodynamic pumping in microchannels through defined temperature fields. Phys Fluids 18(5):051707Google Scholar
  33. Feng G-H, Kim ES (2005) Piezoelectrically actuated dome-shaped diaphragm micropump. J Microelectromech Syst 14(2):192–199Google Scholar
  34. Fuhr G, Hagedorn R, Muller T, Benecke W, Wagner B (1992) Microfabricated electrohydrodynamic (EHD) pumps for liquids of higher conductivity. J Microelectromech Syst 1(3):141–146Google Scholar
  35. Gamboa AR, Morris CJ, Forster FK (2005) Improvements in fixed-valve micropump performance through shape optimization of valves. J Fluids Eng Trans ASME 127(2):339–346Google Scholar
  36. Garcia-Sanchez P, Ramos A, Green NG, Morgan H (2006) Experiments on AC electrokinetic pumping of liquids using arrays of microelectrodes. IEEE Trans Dielectrics Electrical Insulation 13(3):670–677Google Scholar
  37. Garimella SV, Singhal V (2004) Single-phase flow and heat transport and pumping considerations in microchannel heat sinks. Heat Transfer Eng 25(1):15–25Google Scholar
  38. Garimella SV, Singhal V, Liu D (2006) On-chip thermal management with microchannel heat sinks and integrated micropumps. Proc IEEE 94(8):1534–1548Google Scholar
  39. Geipel A, Doll A, Jantscheff P, Esser N, Massing U, Woias P, Goldschmidtboeing F (2007) A novel two-stage backpressure-independent micropump: modeling and characterization. J Micromech Microeng 17(5):949–959Google Scholar
  40. Go DB, Garimella SV, Fisher TS, Mongia RK (2007) Ionic winds for locally enhanced cooling. J Appl Phys 102(5):053302Google Scholar
  41. Goldschmidtboing F, Doll A, Heinrichs M, Woias P, Schrag HJ, Hopt UT (2005) A generic analytical model for micro-diaphragm pumps with active valves. J Micromech Microeng 15(4):673–683Google Scholar
  42. Good BT, Bowman CN, Davis RH (2007) A water-activated pump for portable microfluidic applications. J Colloid Interface Sci 305(2):239–249Google Scholar
  43. Goulpeau J, Trouchet D, Ajdari A, Tabeling P (2005) Experimental study and modeling of polydimethylsiloxane peristaltic micropumps. J Appl Phys 98(4):044914Google Scholar
  44. Grzybowski BA, Brittain ST, Whitesides GM (1999) Thermally actuated interferometric sensors based on the thermal expansion of transparent elastomeric media. Rev Sci Instrum 70(4):2031–2037Google Scholar
  45. Haeberle S, Schmitt N, Zengerle R, Ducree J (2007) Centrifugo-magnetic pump for gas-to-liquid sampling. Sensors Actuat A Phys 135(1):28–33Google Scholar
  46. Haik Y, Kilani M, Hendrix J, Rifai OA, Galambos P (2007) Flow field analysis in a spiral viscous micropump. Microfluidics Nanofluidics 3(5):527–535Google Scholar
  47. Hansen TS, West K, Hassager O, Larsen NB (2007) An all-polymer micropump based on the conductive polymer poly(3,4-ethylenedioxythiophene) and a polyurethane channel system. J Micromech Microeng 17(5):860–866Google Scholar
  48. Homsy A, Linder V, Lucklum F, de Rooij NF (2007) Magnetohydrodynamic pumping in nuclear magnetic resonance environments. Sensors and Actuat B Chem 123(1):636–646Google Scholar
  49. Hu JS, Chao CYH (2007) Numerical study of electroosmotic (EO) flow in microfabricated EO pump with overlapped electrical double layer (EDL). Int J Refrigeration 30(2):290–298Google Scholar
  50. Huang C-W, Lee G-B (2007) A microfluidic system for automatic cell culture. J Micromech Microeng 17(7):1266–1274MathSciNetGoogle Scholar
  51. Huang C-W, Huang S-B, Lee G-B (2006a) Pneumatic micropumps with serially connected actuation chambers. J Micromech Microeng 16(11):2265–2272Google Scholar
  52. Huang S-C, Lee G-B, Chien F-C, Chen S-J, Chen W-J, Yang M-C (2006b) A microfluidic system with integrated molecular imprinting polymer films for surface plasmon resonance detection. J Micromech Microeng 16(7):1251–1257Google Scholar
  53. Hwang T, Popa D, Sin J, Stephanou HE, Leonard EM (2004) BCB wafer bonding for microfluidics. In: Proceedings of SPIE—the international society for optical engineering, micromachining and microfabrication process technology IX, San Jose, vol 5342, pp 82–191Google Scholar
  54. Ilavsky J, Berndt CC (1998) Thermal expansion properties of metallic and cermet coatings. Surface Coatings Technol 102(1–2):19–24Google Scholar
  55. Inman W, Domansky K, Serdy J, Owens B, Trumper D, Griffith LG (2007) Design, modeling and fabrication of a constant flow pneumatic micropump. J Micromech Microeng 17(5):891–899Google Scholar
  56. Iverson BD, Maynes D, Webb BW (2004) Thermally developing electroosmotic convection in rectangular microchannels with vanishing Debye-layer thickness. J Thermophys Heat Transfer 18(4):486–493Google Scholar
  57. Izzo I, Accoto D, Menciassi A, Schmitt L, Dario P (2007) Modeling and experimental validation of a piezoelectric micropump with novel no-moving-part valves. Sensors Actuat A Phys 133(1):128–140Google Scholar
  58. Jang L-S, Li Y-J, Lin S-J, Hsu Y-C, Yao W-S, Tsai M-C, Hou C-C (2007) A stand-alone peristaltic micropump based on piezoelectric actuation. Biomed Microdevices 9(2):185–194Google Scholar
  59. Jeong OC, Park SW, Yang SS, Pak JJ (2005) Fabrication of a peristaltic PDMS micropump. Sensors Actuat A Phys 123–124:453Google Scholar
  60. Joo S, Chung TD, Kim HC (2007) A rapid field-free electroosmotic micropump incorporating charged microchannel surfaces. Sensors Actuat B Chem 123(2):1161–1168Google Scholar
  61. Jung J-Y, Kwak H-Y (2007) Fabrication and testing of bubble powered micropumps using embedded microheater. Microfluidics Nanofluidics 3(2):161–169Google Scholar
  62. Kang Y, Tan SC, Yang C, Huang X (2007) Electrokinetic pumping using packed microcapillary. Sensors Actuat A Phys 133(2):375–382Google Scholar
  63. Kilani MI, Al-Salaymeh A, Al-Halhouli AT (2006) Effect of channel aspect ratio on the flow performance of a spiral-channel viscous micropump. J Fluids Eng 128(3):618–627Google Scholar
  64. Kim J-H, Na K-H, Kang CJ, Kim Y-S (2005a) A disposable thermopneumatic-actuated micropump stacked with PDMS layers and ITO-coated glass. Sensors Actuat A Phys 120(2):365–369Google Scholar
  65. Kim YS, Kim JH, Na KH, Rhee K (2005b) Experimental and numerical studies on the performance of a polydimethylsiloxane valveless micropump. Proc Inst Mech Eng C J Mech Eng Sci 219(10):1139–1145Google Scholar
  66. Kim E-G, Oh J-G, Choi B (2006) A study on the development of a continuous peristaltic micropump using magnetic fluids. Sensors Actuat A Phys 128(1):43–51Google Scholar
  67. Kovacs GTA (1998) Micromachined transducers sourcebook. McGraw-Hill, BostonGoogle Scholar
  68. Laser DJ, Santiago JG (2004) A review of micropumps. J Micromech Microeng 14(6):35–64Google Scholar
  69. Lee DE, Soper S, Wang W (2007) Fabrication of a microfluidic system with integrated electrochemical pump and valves. In: Proceedings of SPIE—the international society for optical engineering, San Jose, vol 6465, pp 64650BGoogle Scholar
  70. Lee S, Kim KJ (2006) Design of IPMC actuator-driven valve-less micropump and its flow rate estimation at low Reynolds numbers. Smart Mater Struct 15(4):1103–1109Google Scholar
  71. Lee S, Kim KJ, Park HC (2005) Design and performance analysis of a novel IPMC-driven micropump, San Diego, vol 5759, pp 439–446Google Scholar
  72. Lei KF, Law WC, Suen Y-K, Li WJ, Yam Y, Ho HP, Kong S-K (2007) A vortex pump-based optically-transparent microfluidic platform for biotech and medical applications. Proc Inst Mech Eng H J Eng Med 221(2):129–141Google Scholar
  73. Lin C-W, Jang J-Y (2005) 3D numerical micro-cooling analysis for an electrohydrodynamic micro-pump. Sensors Actuat A Phys 122(1 SPEC ISS):167–176Google Scholar
  74. Lin Q, Yang B, Xie J, Tai Y-C (2007) Dynamic simulation of a peristaltic micropump considering coupled fluid flow and structural motion. J Micromech Microeng 17(2):220–228Google Scholar
  75. Liu RH, Lodes MJ, Nguyen T, Siuda T, Slota M, Fuji HS, McShea A (2006a) Validation of a fully integrated microfluidic array device for influenza A subtype identification and sequencing. Anal Chem 78(12):4184–4193Google Scholar
  76. Liu RH, Nguyen T, Schwarzkopf K, Fuji HS, Petrova A, Siuda T, Peyvan K, Bizak M, Danley D, McShea A (2006b) Fully integrated miniature device for automated gene expression DNA microarray processing. Anal Chem 78(6):1980–1986Google Scholar
  77. Loverich J, Kanno I, Kotera H (2007) Single-step replicable microfluidic check valve for rectifying and sensing low Reynolds number flow. Microfluidics Nanofluidics 3(4):427–435Google Scholar
  78. Luginbuhl P, Collins SD, Racine GA, Gretillat MA, de Rooij NF, Brooks KG, Setter N (1998) Ultrasonic flexural Lamb-wave actuators based on PZT thin film. Sensors Actuat A Phys 64(1):41–49Google Scholar
  79. Machauf A, Nemirovsky Y, Dinnar U (2005) A membrane micropump electrostatically actuated across the working fluid. J Micromech Microeng 15(12):2309–2316Google Scholar
  80. Mahajan R, Chiu C-P, Chrysler G (2006) Cooling a microprocessor chip. Proc IEEE 94(8):1476–1486Google Scholar
  81. Maruo S, Inoue H (2006) Optically driven micropump produced by three-dimensional two-photon microfabrication. Appl Phys Lett 89(14):144101Google Scholar
  82. Matsumoto S, Maeda R, Klein A (1999) Characterization of a valveless micropump based on liquid viscosity. Microscale Thermophys Eng 3(1):31–42Google Scholar
  83. Matteucci M, Perennes F, Marmiroli B, Miotti P, Vaccari L, Gosparini A, Turchet A, Di Fabrizio E (2006) Compact micropumping system based on LIGA fabricated microparts. Microelectr Eng 83(4–9):1288–1290Google Scholar
  84. MatWeb (2007) MatWeb material property data in http://www.matweb.com/, accessed November 28, 2007
  85. Melcher JR (1981) Continuum electromechanics. MIT Press, CambridgeGoogle Scholar
  86. MEMSnet (2007) MEMS and nanotechnology clearinghouse material index in http://www.memsnet.org/material/, accessed November 28, 2007
  87. Moghaddam S, Ohadi MM (2005) Effect of electrode geometry on performance of an EHD thin-film evaporator. J Microelectromech Syst 14(5):978–986Google Scholar
  88. Morganti E, Fuduli I, Montefusco A, Petasecca M, Pignatel GU (2005) SPICE modelling and design optimization of micropumps. Int J Environ Anal Chem 85(9–11):687–698Google Scholar
  89. Mpholo M, Smith CG, Brown ABD (2003) Low voltage plug flow pumping using anisotropic electrode arrays. Sensors Actuat B Chem 92(3):262–268Google Scholar
  90. Mugele F, Baret J-C (2005) Electrowetting: from basics to applications. J Phys Condensed Matter 17(28):705–774Google Scholar
  91. Nagel JJ, Mikhail G, Noh H, Koo J (2006) Magnetically actuated micropumps using an Fe-PDMS composite membrane. In: Proceedings of SPIE—the international society for optical engineering, smart structures and materials 2006, San Diego, vol 6172, pp 617213Google Scholar
  92. Nakano M, Katsura S, Touchard GG, Takashima K, Mizuno A (2007) Development of an optoelectrostatic micropump using a focused laser beam in a high-frequency electric field. IEEE Trans Ind Appl 43(1):232–237Google Scholar
  93. Nguyen N-T, Huang X (2005) Development of a peristaltic pump in printed circuit boards. J Micromechatronics 3(1):1–13Google Scholar
  94. Nguyen N-T, Meng AH, Black J, White RM (2000) Integrated flow sensor for in situ measurement and control of acoustic streaming in flexural plate wave micropumps. Sensors Actuat A Phys 79(2):115–121Google Scholar
  95. Nguyen N-T, Huang X, Chuan TK (2002) MEMS-micropumps: a review. J Fluids Eng Trans ASME 124(2):384–392Google Scholar
  96. Nguyen T-T, Goo NS, Yoon YS, Yoon KJ (2006) A novel lightweight piezo-composite actuator micropump. In: Proceedings of SPIE—the international society for optical engineering, smart structures and materials 2006, San Diego, vol 6172, pp 617212Google Scholar
  97. Oberhammer J, Niklaus F, Stemme G (2003) Selective wafer-level adhesive bonding with benzocyclobutene for fabrication of cavities. Sensors Actuat A Phys 105(3):297–304Google Scholar
  98. Olesen LH, Bruus H, Ajdari A (2006) Ac electrokinetic micropumps: the effect of geometrical confinement, Faradaic current injection, and nonlinear surface capacitance. Phys Rev E 73(5):056313Google Scholar
  99. Pan T, McDonald SJ, Kai EM, Ziaie B (2005) A magnetically driven PDMS micropump with ball check-valves. J Micromech Microeng 15(5):1021–1026Google Scholar
  100. Patel V, Kassegne SK (2007) Electroosmosis and thermal effects in magnetohydrodynamic (MHD) micropumps using 3D MHD equations. Sensors Actuat B Chem 122(1):42–52Google Scholar
  101. Piyasena ME, Lopez GP, Petsev DN (2006) An electrokinetic cell model for analysis and optimization of electroosmotic microfluidic pumps. Sensors Actuat B Chem 113(1):461–467Google Scholar
  102. Samel B, Chretien J, Yue R, Griss P, Stemme G (2007a) Wafer-level process for single-use buckling-film microliter-range pumps. J Microelectromech Syst 16(4):795–801Google Scholar
  103. Samel B, Griss P, Stemme G (2007b) A thermally responsive PDMS composite and its microfluidic applications. J Microelectromech Syst 16(1):50–57Google Scholar
  104. SCS Coatings (2007) Parylene specifications and properties in http://www.scscoatings.com/parylene_knowledge/specifications.aspx, accessed November 28, 2007
  105. Seyed-Yagoobi J (2005) Electrohydrodynamic pumping of dielectric liquids. J Electrostat 63(6–10):861–869Google Scholar
  106. Shin DD, Mohanchandra KP, Carman GP (2005) Development of hydraulic linear actuator using thin film SMA. Sensors Actuat A Phys 119(1):151–156Google Scholar
  107. Sim W, Oh J, Choi B (2006) Fabrication, experiment of a microactuator using magnetic fluid for micropump application. Microsyst Technol 12(12):1085–1091Google Scholar
  108. Singhal V, Garimella SV (2005a) Influence of bulk fluid velocity on the efficiency of electrohydrodynamic pumping. J Fluids Eng 127(3):484–494Google Scholar
  109. Singhal V, Garimella SV (2005b) A novel valveless micropump with electrohydrodynamic enhancement for high heat flux cooling. IEEE Trans Adv Packaging 28(2):216–230Google Scholar
  110. Singhal V, Garimella SV (2007) Induction electrohydrodynamics micropump for high heat flux cooling. Sensors Actuat A Phys 134(2):650–659Google Scholar
  111. Singhal V, Garimella SV, Murthy JY (2004a) Low Reynolds number flow through nozzle-diffuser elements in valveless micropumps. Sensors Actuat A Phys 113(2):226–235Google Scholar
  112. Singhal V, Garimella SV, Raman A (2004b) Microscale pumping technologies for microchannel cooling systems. Appl Mech Rev 57(1–6):191–221Google Scholar
  113. Song WH, Lichtenberg J (2005) Thermo-pneumatic, single-stroke micropump. J Micromech Microeng 15(8):1425–1432Google Scholar
  114. Stemme E, Stemme G (1993) Valveless diffuser/nozzle-based fluid pump. Sensors Actuat A Phys 39(2):159–167Google Scholar
  115. Su Y, Chen W, Cui F, Zhang W (2005) Analysis and fabrication process of an electromagnetically actuated valveless micropump with two parallel flexible diaphragms. Proc Inst Mech Eng C J Mech Eng Sci 219(9):1007–1014Google Scholar
  116. Suzuki H (2006) Stimulus-responsive gels: Promising materials for the construction of micro actuators and sensors. J Intell Mater Syst Struct 17(12):1091–1097Google Scholar
  117. Tang KC, Liao E, Ong WL, Wong JDS, Agarwal A, Nagarajan R, Yobas L (2006) Evaluation of bonding between oxygen plasma treated polydimethyl siloxane and passivated silicon. In: Journal of Physics: Conference Series, International MEMS Conference 2006, Singapore, vol 34, pp 155–161Google Scholar
  118. Tesla N (1920) Valvular conduit. U.S. Patent No. 1,329,559Google Scholar
  119. Tracey MC, Johnston ID, Davis JB, Tan CKL (2006) Dual independent displacement-amplified micropumps with a single actuator. J Micromech Microeng 16(8):1444–1452Google Scholar
  120. Truckenmuller R, Cheng Y, Ahrens R, Bahrs H, Fischer G, Lehmann J (2006) Micro ultrasonic welding: joining of chemically inert polymer microparts for single material fluidic components and systems. Microsyst Technol 12(10–11):1027–1029Google Scholar
  121. Urbanski JP, Thorsen T, Levitan JA, Bazant MZ (2006) Fast ac electro-osmotic micropumps with nonplanar electrodes. Appl Phys Lett 89(14):143508Google Scholar
  122. Vajandar SK, Xu D, Markov DA, Wikswo JP, Hofmeister W, Li D (2007) SiO2-coated porous anodic alumina membranes for high flow rate electroosmotic pumping. Nanotechnology 18(27):275705Google Scholar
  123. Vijendran S, Smith CG, Mpholo MI (2006) Multi-directional electrokinetic pumping for efficient transport and mixing in biochip applications. In: Proceedings of SPIE—the international society for optical engineering, microfluidics, biomems, and medical microsystems IV, San Jose, vol 6112, pp 61120Google Scholar
  124. Wallis G, Pomerantz DI (1969) Field assisted glass-metal sealing. J Appl Phys 40(10):3946–3949Google Scholar
  125. Woias P (2005) Micropumps—past, progress and future prospects. Sensors Actuat B Chem 105(1):28–38Google Scholar
  126. Wolff A, Perch-Nielsen IR, Larsen UD, Friis P, Goranovic G, Poulsen CR, Kuttera JP, Telleman P (2003) Integrating advanced functionality in a microfabricated high-throughput fluorescent-activated cell sorter. Lab On A Chip 3(1):22Google Scholar
  127. Wu J (2006) Biased AC electro-osmosis for on-chip bioparticle processing. IEEE Trans Nanotechnol 5(2):84–88Google Scholar
  128. Wu J, Lian M, Yang K (2007) Micropumping of biofluids by alternating current electrothermal effects. Appl Phys Lett 90(23):234103Google Scholar
  129. Xu T-B, Su J (2005) Development, characterization, and theoretical evaluation of electroactive polymer-based micropump diaphragm. Sensors Actuat A (Physical) 121(1):267–274Google Scholar
  130. Yamahata C, Chastellain M, Parashar VK, Petri A, Hofmann H, Gijs MAM (2005a) Plastic micropump with ferrofluidic actuation. J Microelectromech Syst 14(1):96–102Google Scholar
  131. Yamahata C, Lacharme F, Burri Y, Gijs MAM (2005b) A ball valve micropump in glass fabricated by powder blasting. Sensors Actuat B Chem 110(1):1–7Google Scholar
  132. Yamahata C, Lotto C, Al-Assaf E, Gijs MAM (2005c) A PMMA valveless micropump using electromagnetic actuation. Microfluidics Nanofluidics 1(3):197–207Google Scholar
  133. Yang S-Y, Hsiung S-K, Hung Y-C, Chang C-M, Liao T-L, Lee G-B (2006) A cell counting/sorting system incorporated with a microfabricated flow cytometer chip. Meas Sci Technol 17(7):2001–2009Google Scholar
  134. Yin Z, Prosperetti A (2005a) ‘Blinking bubble’ micropump with microfabricated heaters. J Micromech Microeng 15(9):1683–1691Google Scholar
  135. Yin Z, Prosperetti A (2005b) A microfluidic ‘blinking bubble’ pump. J Micromech Microeng 15(3):643–651Google Scholar
  136. Yokota K, Sato K, Itoh M (2006) Model experiment, numerical simulation and theoretical analysis on the characteristics of a viscous micropump using a cylindrical rotor in a rectangular duct. JSME Int J Ser B Fluids Thermal Eng 49(2):393–400Google Scholar
  137. Yoon JS, Choi JW, Lee IH, Kim MS (2007) A valveless micropump for bidirectional applications. Sensors Actuat A Phys 135(2):833–838Google Scholar
  138. Yufeng S, Wenyuan C, Feng C, Weiping Z (2006) Electro-magnetically actuated valveless micropump with two flexible diaphragms. Int J Adv Manufact Technol 30(3–4):215–220Google Scholar
  139. Yun K-S, Cho I-J, Bu J-U, Kim C-J, Yoon E (2002) A surface-tension driven micropump for low-voltage and low-power operations. J Microelectromech Syst 11(5):454–461Google Scholar
  140. Zeng S, Chen CH, Mikkelsen JC Jr, Santiago JG (2001) Fabrication and characterization of electroosmotic micropumps. Sensors Actuat B Chem 79(2–3):107Google Scholar
  141. Zengerle R, Richter A, Sandmaier H (1992) A micro membrane pump with electrostatic actuation. In: Proceedings of the IEEE Micro Electro Mechanical Systems Workshop, Travemuende, Germany, pp 19–24Google Scholar
  142. Zhang HJ, Qiu CJ (2006) Characterization and MEMS application of low temperature TiNi(Cu) shape memory thin films. Mater Sci Eng A 438–440:1106–1109Google Scholar
  143. Zhang T, Wang Q-M (2005) Valveless piezoelectric micropump for fuel delivery in direct methanol fuel cell (DMFC) devices. J Power Sources 140(1):72–80Google Scholar
  144. Zhang C, Xing D, Li Y (2007) Micropumps, microvalves, and micromixers within PCR microfluidic chips: advances and trends. Biotechnol Adv 25(5):483–514Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.NSF Cooling Technologies Research Center, School of Mechanical Engineering and Birck Nanotechnology CenterPurdue UniversityWest LafayetteUSA

Personalised recommendations