Microfluidics and Nanofluidics

, Volume 5, Issue 3, pp 373–381

The influence of magnetic carrier size on the performance of microfluidic integrated micro-electromagnetic traps

Research Paper


Efficient manipulation and capture of magnetic carriers in fluid stream require appropriate magnetic confinement devices whose performances are strongly dependent on the nature of the magnetic carriers. In this sense, we have performed a systematic investigation of the magnetic capture efficiencies for five commercially available superparamagnetic particles pumped along rectangular microfluidic channels using microelectromagnetic traps composed of planar circular current-carrying microwires and cylindrical ferromagnetic posts. In addition, in order to obtain a quantitative description of particle movement, we have implemented a numerical model for the dynamics of magnetic objects subjected to magnetic field gradients in conventional continuous-flow microfluidic devices. Fully 3D trajectories of the particles, effective cross-sectional areas of the microchannel as well as micro-electromagnet trapping efficiencies are compared to experimental measurements and a very good agreement is obtained. Finally, a simple and effective analytical model to determine the critical velocity, i.e. when the magnetic trapping device is no longer able to capture and hold 100% of the magnetic superparamagnetic particles, is also presented.


Lab on a chip Microfluidics Magnetic capture Superparamagnetic particles 


  1. Baselt DR, Lee GU, Natesan M, Metzger SW, Sheehan PE, Colton RJ (1998) A biosensor based on magnetoresistance technology. Biosens Bioelectron 13:731–739CrossRefGoogle Scholar
  2. Brzeska M, Panhorst M, Kamp PB, Schotter J, Reiss G, Puhler A, Becker A, Bruckl H (2004) Detection and manipulation of biomolecules by magnetic carriers. J Biotechnol 112:25–33CrossRefGoogle Scholar
  3. Choi J-W, Liakopoulos TM, Ahn CH (2001) An on-chip magnetic bead separator using spiral electromagnets with semi-encapsulated permalloy. Biosens Bioelectron 16:409–416CrossRefGoogle Scholar
  4. Deng T, Whitesides GM, Radhakrishnan M, Zabow G, Prentiss M (2001) Manipulation of magnetic microbeads in suspension using micromagnetic systems fabricated with soft lithography. Appl Phys Lett 78:1775–1777CrossRefGoogle Scholar
  5. Deng T, Prentiss M, Whitesides GM (2002) Fabrication of magnetic microfiltration systems using soft lithography. Appl Phys Lett 80:461–463CrossRefGoogle Scholar
  6. Dubus S, Gravel J-F, Le Drogoff B, Nobert P, Veres T, Boudreau D (2006) PCR-free DNA detection using a magnetic bead-supported polymeric transducer and microelectromagnetic traps. Anal Chem 78:4457–4464CrossRefGoogle Scholar
  7. Fonnum G, Johansson C, Molteberg A, Morup S, Aksnes E (2005) Characterisation of Dynabeads by magnetization measurements and Mössbauer spectroscopy. J Magn Magn Mater 293:41–47CrossRefGoogle Scholar
  8. Galassi M, Davies J, Theiler J, Gough B, Jungman G, Booth M, Rossi F (2006) GNU scientific library reference manual, 2nd edn. http://www.gnu.org/software/gsl/
  9. Gijs MAM (2004) Magnetic bead handling on-chip: new opportunities for analytical applications. Microfluid Nanofluid 1:22–40Google Scholar
  10. Happel J (1965) Low Reynolds number hydrodynamics: with special applications to particulate media. Prentice-Hall, Englewood CliffsGoogle Scholar
  11. Hsing I-M, Xu Y, Zhao W (2007) Micro- and nano- magnetic particles for applications in biosensing. Electroanalysis 19:755–768CrossRefGoogle Scholar
  12. Kim KS, Park J-K (2005) Magnetic force-based multiplexed immunoassay using superparamagnetic nanoparticles in microfluidic channel. Lab Chip 5:657–664CrossRefGoogle Scholar
  13. Lee CS, Lee H, Westervelt RM (2001) Microelectromagnets for the control of magnetic nanoparticles. Appl Phys Lett 79:3308–3310CrossRefGoogle Scholar
  14. Lee H, Purdon AM, Westervelt RM (2004) Manipulation of biological cells using a microelectromagnet matrix. Appl Phys Lett 85:1063–1065CrossRefGoogle Scholar
  15. Liu C, Lagae L, Wirix-Speetjens R, Borghs G (2007) On-chip separation of magnetic particles with different magnetophoretic mobilities. J Appl Phys 101:024913CrossRefGoogle Scholar
  16. Mikkelsen C, Bruus H (2005) Microfluidic capturing-dynamics of paramagnetic bead suspensions. Lab Chip 5:1293–1297CrossRefGoogle Scholar
  17. Mirowski E, Moreland J, Russek S, Donahue MJ (2004) Integrated microfluidic isolation platform for magnetic particle manipulation in biological systems. Appl Phys Lett 84:1786–1788CrossRefGoogle Scholar
  18. Pamme N (2006) Magnetism and microfluidics. Lab Chip 6:24–38CrossRefGoogle Scholar
  19. Ramadan Q, Samper V, Poenar DP, Yu C (2006a) Analytical model for the magnetic field and force in a magnetophoretic microsystem. Biosens Bioelectron 21:1693–1702CrossRefGoogle Scholar
  20. Ramadan Q, Samper VD, Ponar D, Chen Y (2006b) Fabrication of three-dimensional magnetic microdevices with embedded microcoils for magnetic potential concentration. J Microelectromech Syst 15:624–638CrossRefGoogle Scholar
  21. Rida A, Gijs MAM (2004) Dynamics of magnetically retained supraparticle structures in a liquid flow. Appl Phys Lett 85:4986–4988CrossRefGoogle Scholar
  22. Smistrup K, Hansen O, Bruus H, Hansen MF (2005) Magnetic separation in microfluidic systems using microfabricated electromagnets—experiments and simulations. J Magn Magn Mater 293:597–604CrossRefGoogle Scholar
  23. Smistrup K, Tang PT, Hansen O, Hansen MF (2006) Microelectromagnet for magnetic manipulation in lab-on-a-chip systems. J Magn Magn Mater 300:418–426CrossRefGoogle Scholar
  24. Unger MA, Chou H-P, Thorsen T, Scherer A, Quake SR (2000) Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288:113–116CrossRefGoogle Scholar
  25. Verpoorte E (2003) Beads and chips: new recipes for analysis. Lab Chip 3:60N–68NCrossRefGoogle Scholar
  26. de Vries AHB, Krenn BE, van Driel R, Kanger JS (2005) Micro magnetic tweezers for nanomanipulation inside live cells. Biophys J 88:2137–2144CrossRefGoogle Scholar
  27. Whitesides GM, Kazlauskas RJ, Josephson L (1983) Magnetic separations in biotechnology. Trends Biotechnol 1:144–148CrossRefGoogle Scholar
  28. Xia Y, Whitesides GM (1998) Soft lithography. Angew Chem Int Ed 37:550–575CrossRefGoogle Scholar
  29. Zaytseva NV, Goral VN, Montagna RA, Baeumner AJ (2005) Development of a microfluidic biosensor module for pathogen detection. Lab Chip 5:805–811CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Institut des Matériaux IndustrielsConseil National de Recherches du Canada (CNRC)BouchervilleCanada

Personalised recommendations