Microfluidics and Nanofluidics

, Volume 4, Issue 1–2, pp 107–116 | Cite as

Nanohole arrays in metal films as optofluidic elements: progress and potential

  • David Sinton
  • Reuven Gordon
  • Alexandre G. Brolo


Subwavelength holes in metal films exhibit coupled optical phenomena specific to structure geometry, incident light and properties of the near-surface medium. As optofluidic components, nanohole arrays in metal films present several opportunities. This review provides an overview of the unique optical characteristics of such arrays, with emphasis on their application in the micro and nano-fluidic environment. The majority of contributions in this area have focused on sensor applications, and the results of nanohole array based chemical and biomolecular sensors are reviewed here. Also relevant to on-chip analysis, various field and spectroscopic enhancements achieved with nanohole arrays are discussed. The general benefits and limitations of nanohole arrays for analytical applications are discussed in the context of existing tools. Beyond sensing, particle trapping and other potential optofluidic applications of nanohole arrays are discussed.


Optofluidic Nanohole Nanohole array Surface plasmon resonance Sensor Microfluidic Nanofluidic 



The authors are grateful for the financial support of the Natural Sciences and Engineering Research Council (NSERC) of Canada, through discovery research grants. This work was also supported by equipment grants from the Canada Foundation for Innovation (CFI).


  1. Airola M, Liu Y, Blair S (2005) Second-harmonic generation from an array of sub-wavelength metal apertures. J Opt A Pure Appl Opt 7:S118–S123CrossRefGoogle Scholar
  2. Alam MZ, Meier J, Aitchison JS, Mojahedi M (2007) Gain assisted surface plasmon polariton in quantum wells structures. Opt Express 15:176–182CrossRefGoogle Scholar
  3. Applegate RW Jr, Squier J, Vestad T, Oakey J, Marr D (2004) Optical trapping, manipulation, and sorting of cells and colloids in microfluidic systems with diode laser bars. Opt Express 12(19):4390–4398CrossRefGoogle Scholar
  4. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830CrossRefGoogle Scholar
  5. Bethe HA (1944) Theory of diffraction by small holes. Phys Rev 66:163–182zbMATHCrossRefMathSciNetGoogle Scholar
  6. Bratton D, Yang D, Dai J, Ober CK (2006) Recent progress in high resolution lithography. Polym Adv Technol 17:94–103CrossRefGoogle Scholar
  7. Bravo-abad, Degiron A, Przybilla F, Genet C, Garcia-Vidal FJ, Martin-Monreno L Ebbesen TW (2006) How light emerges from an illuminated array of subwavelength holes. Nat Phys 2:120–123CrossRefGoogle Scholar
  8. Brolo AG, Arctander E, Gordon R, Leathem B, Kavanagh KL (2004a) Nanohole-enhanced Raman scattering. Nano Lett 4:2015–2018CrossRefGoogle Scholar
  9. Brolo AG, Gordon R, Leathem B, Kavanagh KL (2004b) Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films. Langmuir 20:4813–4815CrossRefGoogle Scholar
  10. Brolo AG, Kwok SC, Moffitt MG, Gordon R, Riordon J, Kavanagh KL (2005) Enhanced fluorescence from arrays of nanoholes in a gold film. J Am Chem Soc 127:14936–14941CrossRefGoogle Scholar
  11. Brolo AG, Kwok SC, Cooper MD, Moffitt MG, Wang CW, Gordon R, Riordon J, Kavanagh KL (2006) Surface plasmon-quantum dot coupling from arrays of nanoholes. J Phys Chem B 110:8307–8313CrossRefGoogle Scholar
  12. Chang SH, Gray SK, Schatz GC (2005) Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films. Opt Express 13:3150–3165CrossRefGoogle Scholar
  13. Cooper MA (2003) Label-free screening of bio-molecular interactions. Anal Bioanal Chem 377:834–842CrossRefGoogle Scholar
  14. Cordovez B, Psaltis D, Erickson D (2007) Trapping and storage of particles in electroactive microwells. Appl Phys Lett 90:024102CrossRefGoogle Scholar
  15. Dahlin A, Zach M, Rindzevicius T, Kall M, Sutherland DS, Hook F (2005) Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events. J Am Chem Soc 127:5043–5048CrossRefGoogle Scholar
  16. De Leebeeck A, Kumar LKS, de Lange V, Sinton D, Gordon R, Brolo AG (2007) On-chip surface-based detection with nanohole arrays. Anal Chem 79:4094–4100CrossRefGoogle Scholar
  17. DiMaio JR, Ballato J (2006) Polarization-dependent transmission through subwavelength anisotropic aperture arrays. Opt Express 14:2380–2384CrossRefGoogle Scholar
  18. Dintinger J, Klein S, Ebbesen TW (2006) Molecule-surface plasmon interactions in hole arrays: enhanced absorption, refractive index changes, and all-optical switching. Adv Mater 18:1267–1270CrossRefGoogle Scholar
  19. Duhr S, Braun D (2006) Why molecules move along a temperature gradient. PNAS 103:19678–19682CrossRefGoogle Scholar
  20. Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA (1998) Extraordinary optical transmission through sub wavelength hole arrays. Nature 391:667–669CrossRefGoogle Scholar
  21. Eijkel JCT, van den Berg A (2005) Nanofluidics: what is it and what can we expect from it? Microfluidics Nanofluidics 1:249–267CrossRefGoogle Scholar
  22. Gao D, Chen W, Mulchandani A (2007) Detection of tumor markers based on extinction spectra of visible light passing through gold nanoholes. Appl Phys Lett 90:073901CrossRefGoogle Scholar
  23. Gates BD, Xu Q, Stewart M, Ryan D, Willson CG, Whitesides GM (2005) New approaches to nanofabrication: molding, printing, and other techniques. Chem Rev 105:1171–1196CrossRefGoogle Scholar
  24. Genet C, Ebbesen TW (2007) Light in tiny holes. Nature 445:39–46CrossRefGoogle Scholar
  25. Gordon R, Brolo AG (2005) Increased cut-off wavelength for a subwavelength hole in a real metal. Opt Express 13:1933–1938CrossRefGoogle Scholar
  26. Gordon R, Brolo AG, McKinnon A, Rajora A, Leathem B, Kavanagh KL (2004) Strong polarization in the optical transmission through elliptical nanohole arrays. Phys Rev Lett 92:037401CrossRefGoogle Scholar
  27. Gordon R, Hughes M, Leathem B, Kavanagh KL, Brolo AG (2005) Basis and lattice polarization mechanisms for light transmission through nanohole arrays in a metal film. Nano Lett 5:1243–1246CrossRefGoogle Scholar
  28. Gordon R, Kumar LKS, Brolo AG (2006) Resonant light transmission through a nanohole in a metal film. IEEE Trans Nanotechnol 5:291–294CrossRefGoogle Scholar
  29. Homola J (2003) Present and future of surface plasmon resonance biosensors. Anal Bioanal Chem 377:528–539CrossRefGoogle Scholar
  30. Homola J, Yee SS, Gauglitz G (1999) SPR sensors: review. Sens Actuators B 54:3–15CrossRefGoogle Scholar
  31. Iwasaki Y, Tobita T, Kurihara K, Horiuchi T, Suzuki K, Niwa O (2006) Imaging of flow pattern in micro flow channel using surface plasmon resonance. Meas Sci Technol 17:3184–3188CrossRefGoogle Scholar
  32. Jung LS, Campbell CT, Chinowsky TM, Mar MN, Yee SS (1998) Quantitative interpretation of the response of SPR. Langmuir 14:5636–5648CrossRefGoogle Scholar
  33. Kim IT, Kihm KD (2006) Label-free visualization of microfluidic mixture concentration fields using SPR reflectance imaging. Exp Fluids 41:905–916CrossRefGoogle Scholar
  34. Koerkamp KJK, Enoch S, Segerink FB, Hulst NFv, Kuipers L (2004) Strong Influence of hole shape on extraordinary transmission through periodic arrays of nanoholes. Phys Rev Lett 92:183901CrossRefGoogle Scholar
  35. Krishnan A, Thio T, Kima TJ, Lezec HJ, Ebbesen TW, Wolff PA, Pendry J, Martin-Moreno L, Garcia-Vidal FJ (2001) Evanescently coupled resonance in surface plasmon enhanced transmission. Opt Commun 200:1–7CrossRefGoogle Scholar
  36. Lesuffleur A, Kumar LKS, Gordon R (2007a) Apex-enhanced second-harmonic generation by using double-hole arrays in a gold film. Phys Rev B 75:045423CrossRefGoogle Scholar
  37. Lesuffleur A, Kumar LKS, Brolo AG, Kavanagh KL, Gordon R (2007b) Apex-enhanced raman spectroscopy using double-hole arrays in a gold film. J Phys Chem C 111(6):2347–2350CrossRefGoogle Scholar
  38. Levene MJ, Korlach J, Turner SW, Foquet M, Craighead HG, Webb WW (2003) Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299:682–686CrossRefGoogle Scholar
  39. Liu Y, Blair S (2003) Fluorescence enhancement from an array of nanoholes. Opt Lett 28:507–509CrossRefGoogle Scholar
  40. Liu Y, Bishop J, Williams L, Blair S, Herron J (2004) Biosensing based upon molecular confinement in metallic nanocavity arrays. Nanotechnology 15:1368–1374CrossRefGoogle Scholar
  41. Metzger NK, Marchington RF, Mazilu M, Smith RL, Dholakia K, Wright EM (2007) Measurement of the restoring forces acting on two optically bound particles from normal mode correlations. Phys Rev Lett 98:068102CrossRefGoogle Scholar
  42. Monat C, Domachuk P, Eggleton BJ (2007) Integrated optofluidics: a new river of light. Nat Photonics 1:106–114CrossRefGoogle Scholar
  43. Mullett WM, Lai EPC, Yeung JM (2000) Surface plasmon resonance-based immunoassays. Methods 22:77–91CrossRefGoogle Scholar
  44. Neuman KC, Block SM (2004) Optical trapping. Rev Sci Instrum 75(9):2787–2809CrossRefGoogle Scholar
  45. Nice EC, Catimel B (1999) Instrumental biosensors. Bioessays 21:339–352CrossRefGoogle Scholar
  46. Probstein RF (2003) Physicochemical hydrodynamics, 2nd edn. Wiley, NJGoogle Scholar
  47. Psaltis D, Quake SR, Yang C (2006) Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442:381–386CrossRefGoogle Scholar
  48. Raether H (1988) Surface plasmon on smooth and rough surfaces and on gratings. Springer, BerlinGoogle Scholar
  49. Righini M, Zelenina AS, Girard C, Quidant R (2007) Parallel and selective trapping in a patterned plasmonic landscape. Nat Phys. doi:10.1038/nphys624Google Scholar
  50. Rindzevicius T, Alaverdyan Y, Dahlin A, Hook F, Sutherland DS, Kall M (2005) Plasmonic sensing characteristics of single nanometric holes. Nano Lett 5:2335–2339CrossRefGoogle Scholar
  51. Shankaran DR, Vengatajalabathy GK, Miura N (2007) Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest. Sens Actuators B Chem 121:158–177CrossRefGoogle Scholar
  52. Sinton D (2004) Microscale flow visualization. Microfluidics Nanofluidics 1:2–21CrossRefGoogle Scholar
  53. Smolyaninov II, Elliott J, Zayats AV, Davis CC (2005) Far-field optical microscopy with a nanometer-scale resolution based on the in-plane image magnification by surface plasmon polaritons. Phys Rev Lett 94:057401CrossRefGoogle Scholar
  54. Srituravanich W, Fang N, Sun C, Luo Q, Zhang X (2004) Plasmonic nanolithography. Nano Lett 4:1085–1088CrossRefGoogle Scholar
  55. Stark PRH, Halleck AE, Larson DN (2005) Short order nanohole arrays in metals for highly sensitive probing of local indices of refraction as the basis for a highly multiplexed biosensor technology. Methods 37:37–47CrossRefGoogle Scholar
  56. Squires TM, Quake SR (2005) Microfluidics: fluid physics at the nanoliter scale. Rev Mod Phys 77:977–1026CrossRefGoogle Scholar
  57. Sun YG, Xia YN (2003) Gold and silver nanoparticles: a class of chromophores with colors tunable in the range from 400 to 750 nm. Analyst 128:686–691CrossRefGoogle Scholar
  58. Tetz KA, Pang L, Fainman Y (2006) High-resolution surface plasmon resonance sensor based on linewidth-optimized nanohole array transmittance. Opt Lett 31:1528–1530CrossRefGoogle Scholar
  59. Verpoorte E (2003) Beads and chips: new recipes for analysis. Lab Chip 3:60N–68NCrossRefGoogle Scholar
  60. Volpe G, Quidant R, Badenes G, Petrov D (2006) Surface plasmon radiation forces. Phys Rev Lett 96:238101CrossRefGoogle Scholar
  61. Vukusic P, Sambles JR (2003) Photonic structures in biology. Nature 424:852–855CrossRefGoogle Scholar
  62. Whitney AV, Myers BD, Van Duyne RP (2004) Sub-100 nm triangular nanopores fabricated with the reactive ion etching variant of nanosphere lithography and angle-resolved nanosphere lithography. Nano Lett 4:1507–1511CrossRefGoogle Scholar
  63. Williams SM, Stafford AD, Rodriguez KR, Rogers TM, Coe JV (2003) Accessing SP with Ni microarrays for enhanced IR. J Phys Chem B 107:11871–11879CrossRefGoogle Scholar
  64. Yin LL, Vlasko-Vlasov VK, Pearson J, Hiller JM, Hua J, Welp U, Brown DE, Kimball CW (2005) Subwavelength focusing and guiding of surface plasmons. Nano Lett 5:1399–1402CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • David Sinton
    • 1
  • Reuven Gordon
    • 2
  • Alexandre G. Brolo
    • 3
  1. 1.Department of Mechanical EngineeringUniversity of VictoriaVictoriaCanada
  2. 2.Department of Electrical and Computer EngineeringUniversity of VictoriaVictoriaCanada
  3. 3.Department of ChemistryUniversity of VictoriaVictoriaCanada

Personalised recommendations