Microfluidics and Nanofluidics

, Volume 4, Issue 1–2, pp 129–144 | Cite as

Optofluidics technology based on colloids and their assemblies

  • Seung-Kon Lee
  • Shin-Hyun Kim
  • Ji-Hwan Kang
  • Sung-Gyu Park
  • Won-Jong Jung
  • Se-Hoon Kim
  • Gi-Ra Yi
  • Seung-Man Yang
Review

Abstract

Optofluidic technology is believed to provide a breakthrough for the currently underlying problems in microfluidics and photonics/optics by complementary integration of fluidics and photonics. The key aspect of the optofluidics technology is based on the use of fluidics for tuning the optical properties and addressing various functional materials inside of microfluidic channels which have build-in photonic structures. Through the optofluidic integrations, fluidics enhances the controllability and tunability of optical systems. In particular, colloidal dispersion gives novel properties such as photonic band-gaps and enhanced Raman spectrum that conventional optofluidic devices cannot exhibit. In this paper, the state of the art of the colloidal dispersions is reviewed especially for optofluidic applications. From isolated singlet colloidal particles to colloidal clusters, their self-organized assemblies lead to optical manipulation of the photonic/optical properties and responses. Finally, we will discuss the prospects of the integrated optofluidics technology based on colloidal systems.

Keywords

Optofluidics Colloidal crystals Colloidal clusters Nanosphere lithography Surface enhanced Raman scattering 

References

  1. Ashkin A, Dziedzic J, Bjorkholm J, Chu S (1986) Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett 11:288–290Google Scholar
  2. Bartlett P, Campbell A (2005) Three-dimensional binary superlattices of oppositely charged colloids. Phys Rev Lett 95:128302CrossRefGoogle Scholar
  3. Battersby B, Bryant D, Meutermans W, Matthews D, Smythe M, Trau M (2000) Toward larger chemical libraries: encoding with fluorescent colloids in combinatorial chemistry. J Am Chem Soc 122:2138–2139CrossRefGoogle Scholar
  4. Bishop A, Nieminen T, Heckenberg N, Rubinsztein-Dunlop H (2004) Optical microrheology using rotating laser-trapped particles. Phys Rev Lett 92:198104CrossRefGoogle Scholar
  5. Brody J, Quake S (1999) A self-assembled microlensing rotational probe. Appl Phys Lett 74:144–146CrossRefGoogle Scholar
  6. Cai M, Painter O, Vahala K, Sercel P (2000) Fiber-coupled microsphere laser. Opt Lett 25:1430–1432CrossRefGoogle Scholar
  7. Caruso F (2001) Nanoengineering of particle surfaces. Adv Mater 13:11–22CrossRefGoogle Scholar
  8. Caruso F (2004) Colloids and colloid assemblies. Wiley-VCH, New YorkGoogle Scholar
  9. Cho YS, Yi GR, Kim SH, Pine D, Yang SM (2005a) Colloidal clusters of microspheres from water-in-oil emulsions. Chem Mater 17:5006–5013CrossRefGoogle Scholar
  10. Cho YS, Yi GR, Lim JM, Kim SH, Manoharan V, Pine D, Yang S (2005b) Self-organization of bidisperse colloids in water droplets. J Am Chem Soc 127:15968–15975CrossRefGoogle Scholar
  11. Choi DG, Jang SG, Kim S, Lee E, Han CS, Yang SM (2006) Multifaceted and nanobored particle arrays sculpted using colloidal lithography. Adv Func Mater 16:33–40CrossRefGoogle Scholar
  12. Choi DG, Kim S, Lee E, Yang SM (2005) Particle arrays with patterned pores by nanomachining with colloidal masks. J Am Chem Soc 127:1636–1637CrossRefGoogle Scholar
  13. Choi DG, Yu HK, Jang SG, Yang SM (2004) Colloidal lithographic nanopatterning via reactive ion etching. J Am Chem Soc 126:7019–7025CrossRefGoogle Scholar
  14. Deegan R, Bakajin O, Dupont T, Huber G, Nagel S, Witten T (1997) Capillary flow as the cause of ring stains from dried liquid drops. Nature 389:827–829CrossRefGoogle Scholar
  15. Domachuk P, Cronin-Golomb M, Eggleton B, Mutzenich S, Rosengarten G, Mitchell A (2005) Application of optical trapping to beam manipulation in optofluidics. Opt Exp 13:7265–7275CrossRefGoogle Scholar
  16. Foulger S, Jiang P, Lattam A, Smith D, Ballato J (2001) Mechanochromic response of poly(ethylene glycol) methacrylate hydrogel encapsulated crystalline colloidal arrays. Langmuir 17:6023–6026CrossRefGoogle Scholar
  17. Friese M, Nieminen T, Heckenberg N, Rubinsztein-Dunlop H (1998) Optical alignment and spinning of laser-trapped microscopic particles. Nature 394:348–350CrossRefGoogle Scholar
  18. Fudouzi H, Xia Y (2003) Colloidal crystals with tunable colors and their use as photonic papers. Langmuir 19:9653–9660CrossRefGoogle Scholar
  19. Glotzer S (2004) Some assembly required. Science 306:419–420CrossRefGoogle Scholar
  20. Graf C, van Blaaderen A (2002) Metallodielectric colloidal core-shell particles for photonic applications. Langmuir 18:524–534CrossRefGoogle Scholar
  21. Graf C, Vossen D, Imhof A, van Blaaderen A (2003) A general method to coat colloidal particles with silica. Langmuir 19:6693–6700CrossRefGoogle Scholar
  22. Gu Z, Horie R, Kubo S, Yamada Y, Fujishima A, Sato O (2002) Fabrication of a metal-coated three-dimensionally ordered macroporous film and its application as a refractive index sensor. Angew Chem Int Edit 41:1153–1156CrossRefGoogle Scholar
  23. Haynes C, Van Duyne R (2003) Plasmon-sampled surface-enhanced Raman excitation spectroscopy. J Phys Chem B 107:7426–7433CrossRefGoogle Scholar
  24. Holtz J, Asher S (1997) Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials. Nature 389:829–832CrossRefGoogle Scholar
  25. Jackson J, Halas N (2001) Silver nanoshells: variations in morphologies and optical properties. J Phys Chem B 105:2743–2746CrossRefGoogle Scholar
  26. Jackson J, Westcott S, Hirsch L, West J, Halas N (2003) Controlling the surface enhanced Raman effect via the nanoshell geometry. Appl Phys Lett 82:257–259CrossRefGoogle Scholar
  27. Jensen-McMullin C, Lee H, Lyons E (2005) Demonstration of trapping, motion control, sensing and fluorescence detection of polystyrene beads in a multi-fiber optical trap. Opt Exp 13:2634–2642CrossRefGoogle Scholar
  28. Kalsin A, Fialkowski M, Paszewski M, Smoukov S, Bishop K, Grzybowski B (2006) Electrostatic self-assembly of binary nanoparticle crystals with a diamond-like lattice. Science 312:420–424CrossRefGoogle Scholar
  29. Kamp U, Kitaev V, von Freymann G, Ozin G, Mabury S (2005) Colloidal crystal capillary columns—towards optical chromatography. Adv Mater 17:438–443CrossRefGoogle Scholar
  30. Kegel W, van Blaaderen A (2000) Direct observation of dynamical heterogeneities in colloidal hard-sphere suspensions. Science 287:290–293CrossRefGoogle Scholar
  31. Kim E, Xia Y, Whitesides G (1996) Two- and three-dimensional crystallization of polymeric microspheres by micromolding in capillaries. Adv Mater 8:245–247CrossRefGoogle Scholar
  32. Kim SH, Lee SY, Yi GR, Pine D, Yang SM (2006) Microwave-assisted self-organization of colloidal particles in confining aqueous droplets. J Am Chem Soc 128:10897–10904CrossRefGoogle Scholar
  33. Knight J, Dnbreuil N, Sandoghdar V, Hare J, Lefevreseguin V, Raimond J, Haroche S (1995) Mapping whispering-gallery modes in microspheres with a near-field probe. Opt Lett 20:1515–1517CrossRefGoogle Scholar
  34. Korda P, Taylor M, Grier D (2002) Kinetically locked-in colloidal transport in an array of optical tweezers. Phys Rev Lett 89:128301CrossRefGoogle Scholar
  35. Ladavac K, Grier D (2004) Microoptomechanical pumps assembled and driven by holographic optical vortex arrays. Opt Exp 12:1144–1149CrossRefGoogle Scholar
  36. Leach J, Mushfique H, di Leonardo R, Padgett M, Cooper J (2006) An optically driven pump for microfluidics. Lab Chip 6:735–739CrossRefGoogle Scholar
  37. Lee SK, Yi GR, Yang SM (2006) High-speed fabrication of patterned colloidal photonic structures in centrifugal microfluidic chips. Lab Chip 6:1171–1177CrossRefGoogle Scholar
  38. Leunissen M, Christova C, Hynninen A, Royall C, Campbell A, Imhof A, Dijkstra M, van Roij R, van Blaaderen A (2005) Ionic colloidal crystals of oppositely charged particles. Nature 437:235–240CrossRefGoogle Scholar
  39. Levin C, Bishnoi S, Grady N, Halas N (2006) Determining the conformation of thiolated poly(ethylene glycol) on Au nanoshells by surface-enhanced Raman scattering spectroscopic assay. Anal Chem 78:3277–3281CrossRefGoogle Scholar
  40. Liu G, Kim J, Lu Y, Lee L (2006) Optofluidic control using photothermal nanoparticles. Nat Mater 5:27–32CrossRefGoogle Scholar
  41. Liu G, Lee L (2005) Nanowell surface enhanced Raman scattering arrays fabricated by soft-lithography for label-free biomolecular detections in integrated microfluidics. Appl Phys Lett 87:074101CrossRefGoogle Scholar
  42. MacDonald M, Spalding G, Dholakia K (2003) Microfluidic sorting in an optical lattice. Nature 426:421–424CrossRefGoogle Scholar
  43. Maerkl S, Quake S (2007) A systems approach to measuring the binding energy landscapes of transcription factors. Science 315:233–237CrossRefGoogle Scholar
  44. Malinsky M, Kelly K, Schatz G, Van Duyne R (2001) Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers. J Am Chem Soc 123:1471–1482CrossRefGoogle Scholar
  45. Manoharan V, Elsesser M, Pine D (2003) Dense packing and symmetry in small clusters of microspheres. Science 301:483–487CrossRefGoogle Scholar
  46. Monat C, Domachuk P, Eggleton B: Integrated optofluidics (2007a) A new river of light. Nat Photonics 1:106–114CrossRefGoogle Scholar
  47. Monat C, Grillet C, Domachuk R, Smith C, Magi E, Moss D, Nguyen H, Tomljenovic-Hanic S, Cronin-Golomb M, Eggleton B, Freeman D, Madden S, Luther-Davies B, Mutzenich S, Rosengarten G, Mitchell A (2007b) Frontiers in microphotonics: tunability and all-optical control. Laser Phys Lett 4:177–186CrossRefGoogle Scholar
  48. Moon JH, Kim S, Yi GR, Lee YH, Yang SM (2004a) Fabrication of ordered macroporous cylinders by colloidal templating in microcapillaries. Langmuir 20:2033–2035CrossRefGoogle Scholar
  49. Moon JH, Yi GR, Yang SM, Pine D, Park SB (2004b) Electrospray-assisted fabrication of uniform photonic balls. Adv Mater 16:605–609CrossRefGoogle Scholar
  50. Mukaiyama T, Takeda K, Miyazaki H, Jimba Y, Kuwata-Gonokami M (1999) Tight-binding photonic molecule modes of resonant bispheres. Phys Rev Lett 82:4623–4626CrossRefGoogle Scholar
  51. Neale S, Macdonald M, Dholakia K, Krauss T (2005) All-optical control of microfluidic components using form birefringence. Nat Mater 4:530–533CrossRefGoogle Scholar
  52. Ozin G, Arsenault A (2005) Nanochemistry. RSC Publishing, LondonGoogle Scholar
  53. Park T, Lee S, Seong GH, Choo J, Lee EK, Kim Y, Ji WH, Hwang SY, Gweon DG, Lee S (2005) Highly sensitive signal detection of duplex dye-labelled DNA oligonucleotides in a PDMS microfluidic chip: confocal surface-enhanced Raman spectroscopic study. Lab Chip 5:437–442CrossRefGoogle Scholar
  54. Pham T, Jackson J, Halas N, Lee T (2002) Preparation and characterization of gold nanoshells coated with self-assembled monolayers. Langmuir 18:4915–4920CrossRefGoogle Scholar
  55. Prodan E, Radloff C, Halas N, Nordlander P (2003) A hybridization model for the plasmon response of complex nanostructures. Science 302:419–422CrossRefGoogle Scholar
  56. Psaltis D, Quake S, Yang C (2006) Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442:381–386CrossRefGoogle Scholar
  57. Russel W, Saville D, Scholwalter W (1989) Colloidal dispersions. Cambridge University Press, CambridgeGoogle Scholar
  58. Shevchenko E, Talapin D, Kotov N, O’Brien S, Murray C (2006) Structural diversity in binary nanoparticle superlattices. Nature 439:55–59CrossRefGoogle Scholar
  59. Shiu J, Chen P (2005) Active patterning using an addressable microfluidic network. Adv Mater 17:1866–1869CrossRefGoogle Scholar
  60. Shiu J, Kuo C, Chen P (2004) Actively controlled self-assembly of colloidal crystals in microfluidic networks by electrocapillary forces. J Am Chem Soc 126:8096–8097CrossRefGoogle Scholar
  61. Spillane S, Kippenberg T, Vahala K (2002) Ultralow-threshold Raman laser using a spherical dielectric microcavity. Nature 415:621–623CrossRefGoogle Scholar
  62. Sun Y, Xia Y (2002) Increased sensitivity of surface plasmon resonance of gold nanoshells compared to that of gold solid colloids in response to environmental changes. Anal Chem 74:5297–5305CrossRefGoogle Scholar
  63. Talley C, Jackson J, Oubre C, Grady N, Hollars C, Lane S, Huser T, Nordlander P, Halas N (2005) Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates. Nano Lett 5:1569–1574CrossRefGoogle Scholar
  64. Terray A, Oakey J, Marr D (2002) Microfluidic control using colloidal devices. Science 296:1841–1844CrossRefGoogle Scholar
  65. Unger M, Chou H, Thorsen T, Scherer A, Quake S (2000) Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288:113–116CrossRefGoogle Scholar
  66. Velev O, Lenhoff A, Kaler E (2000) A class of microstructured particles through colloidal crystallization. Science 287:2240–2243CrossRefGoogle Scholar
  67. Vernooy D, Ilchenko V, Mabuchi H, Streed E, Kimble H (1998) High-Q measurements of fused-silica microspheres in the near infrared. Opt Lett 23:247–249Google Scholar
  68. Vlasov Y, Bo X, Sturm J, Norris D (2001) On-chip natural assembly of silicon photonic bandgap crystals. Nature 414:289–293CrossRefGoogle Scholar
  69. Vossen D, Fific D, Penninkhof J, van Dillen T, Polman A, van Blaaderen A (2005) Combined optical tweezers/ion beam technique to tune colloidal masks for nanolithography. Nano Lett 5:1175–1179CrossRefGoogle Scholar
  70. Wang H, Brandl D, Nordlander P, Halas N (2007) Plasmonic nanostructures: artificial molecules. Acc Chem Res 40:53–62CrossRefGoogle Scholar
  71. Xia Y, Gates B, Li Z (2001) Self-assembly approaches to three-dimensional photonic crystals. Adv Mater 13:409–413CrossRefGoogle Scholar
  72. Yang P, Rizvi A, Messer B, Chmelka B, Whitesides G, Stucky G (2001) Patterning porous oxides within microchannel networks. Adv Mater 13:427–431CrossRefGoogle Scholar
  73. Yang SM, Jang SG, Choi DG, Kim SR, Yu HK (2006) Nanomachining by colloidal lithography. Small 2:458–475CrossRefGoogle Scholar
  74. Yethiraj A, van Blaaderen A (2003) A colloidal model system with an interaction tunable from hard sphere to soft and dipolar. Nature 421:513–517CrossRefGoogle Scholar
  75. Yi GR, Jeon SJ, Thorsen T, Manoharan V, Quake S, Pine D, Yang SM (2003a) Generation of uniform photonic balls by template-assisted colloidal crystallization. Syn Met 139:803–806CrossRefGoogle Scholar
  76. Yi GR, Manoharan V, Klein S, Brzezinska K, Pine D, Lange F, Yang SM (2002) Monodisperse micrometer-scale spherical assemblies of polymer particles. Adv Mater 14:1137–1140CrossRefGoogle Scholar
  77. Yi GR, Manoharan V, Michel E, Elsesser M, Yang SM, Pine D (2004) Colloidal clusters of silica or polymer microspheres. Adv Mater 16:1204–1208CrossRefGoogle Scholar
  78. Yi GR, Thorsen T, Manoharan V, Hwang MJ, Jeon SJ, Pine D, Quake S, Yang SM (2003b) Generation of uniform colloidal assemblies in soft microfluidic devices. Adv Mater 15:1300–1304CrossRefGoogle Scholar
  79. Zhang Z, Glotzer S (2004) Self-assembly of patchy particles. Nano Lett 4:1407–1413CrossRefGoogle Scholar
  80. Zhang Z, Keys A, Chen T, Glotzer S (2005) Self-assembly of patchy particles into diamond structures through molecular mimicry. Langmuir 21:11547–11551CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Seung-Kon Lee
    • 1
  • Shin-Hyun Kim
    • 1
  • Ji-Hwan Kang
    • 1
  • Sung-Gyu Park
    • 1
  • Won-Jong Jung
    • 1
  • Se-Hoon Kim
    • 1
  • Gi-Ra Yi
    • 2
  • Seung-Man Yang
    • 1
  1. 1.National Creative Research Initiative Center for Integrated Optofluidic Systems and Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and TechnologyDaejeonSouth Korea
  2. 2.Korea Basic Institute of Science and TechnologySeoul Center, Nanobio System TeamSeoulSouth Korea

Personalised recommendations