Microfluidics and Nanofluidics

, Volume 4, Issue 1–2, pp 97–105 | Cite as

Tunable optofluidic devices

Review

Abstract

The emerging field of optofluidics provides exciting opportunities for the realization of tunable optofluidic devices (TODs) using a large variety of physical mechanisms. This is because microfluidics is a promising technology for achieving a high degree of tunability—a capability that is not available in many of the current optical devices. In addition, microfluidics holds a great potential for rapid prototyping, miniaturization and integration. TODs already find commercial applications in various fields such as display and imaging, and are expected to become a key player in future optical systems for biology, medicine, communication and information processing. We review the recent progress in the field and discuss potential future directions.

References

  1. Berge B, Peseux J (2000) Variable focal lens controlled by an external voltage: an application of electrowetting. Eur Phys J E 3:159CrossRefGoogle Scholar
  2. Berreman DW (1980) US Patent No. 4,190,330Google Scholar
  3. Berry S, Kedzierski J, Abedian B (2006) Low voltage electrowetting using thin fluoroploymer films. J Colloid Interface Sci 303:517CrossRefGoogle Scholar
  4. Bilenberg B, Rasmussen T, Balslev S, Kristensen A (2006) Real-time tunability of chip-based light source enabled by micro-fluidic mixing. J Appl Phys 99:023102CrossRefGoogle Scholar
  5. Brown M, Vestad T, Oakey J, Marr DWM (2006) Optical waveguides via viscosity-mismatched microfluidic flows. Appl Phys Lett 88:134109CrossRefGoogle Scholar
  6. Campbell K, Groisman A, Levy U, Pang L, Mookherjea S, Psaltis D, Fainman Y (2004) A microfluidic 2 × 2 optical switch. Appl Phys Lett 85:6119CrossRefGoogle Scholar
  7. Campbell K, Levy U, Fainman Y, Groisman A (2006) Pressure-driven devices with lithographically fabricated composite epoxy-elastomer membranes. Appl Phys Lett 89:154105CrossRefGoogle Scholar
  8. Chiou PY, Chang Z, Wu MC (2003) Pico liter droplet manipulation based on a novel continuous opto- electrowetting mechanism. In: Proceedings IEEE twelfth international conference on solid-state sensors, actuators and microsystems (Transducers '03), pp 557–562Google Scholar
  9. Chronis N, Liu GL, Jeong KH, Lee LP (2003) Tunable liquid-filled microlens array integrated with microfluidic network. Opt Express 11:2370CrossRefGoogle Scholar
  10. Commander LG, Day SE, Selviah DR (2000) Variable focal length microlenses. Opt Commun 177:157CrossRefGoogle Scholar
  11. Domachuk P, Cronin-Golomb M, Eggleton BJ, Mutzenich S, Rosengarten G, Mitchell A (2005) Application of optical trapping to beam manipulation in optofluidics. Opt Express 13:7265CrossRefGoogle Scholar
  12. Egatz-Gómez A, Melle S, García AA, Lindsay SA, Márquez M, Domínguez-García P, Rubio MA, Picraux ST, Taraci JL, Clement T, Yang D, Hayes MA, Gust D (2006) Discrete magnetic microfluidics. Appl Phys Lett 89:129902CrossRefGoogle Scholar
  13. Erickson D, Rockwood T, Emery T, Scherer A, Psaltis D (2006) Nanofluidic tuning of photonic crystal circuits. Opt Lett 31:59CrossRefGoogle Scholar
  14. Galas JC, Torres J, Belotti M, Kou Q, Chen Y (2005) Microfluidic tunable dye laser with integrated mixer and ring resonator. Appl Phys Lett 86:264101CrossRefGoogle Scholar
  15. Garstecki P, Fischbach MA, Whitesides GM (2005) Design for mixing using bubbles in branched microfluidic channels. Appl Phys Lett 86:244108CrossRefGoogle Scholar
  16. Gersborg-Hansen M, Balslev S, Mortensen NA, A. Kristensen A (2005) A coupled cavity micro fluidic dye ring laser. Microelectro Eng 78–79:185CrossRefGoogle Scholar
  17. Gray S (1697) A letter from Mr. Stephen Gray, from Canterbury, May the 12th 1697, concerning making water subservient to the viewing both near, distant objects, with the description of a natural reflecting microscope. Philos Trans (1683–1775) 19:539CrossRefGoogle Scholar
  18. Hayes RA, Feenstra BJ (2003) Video-speed electronic paper based on electrowetting. Nature 425:383CrossRefGoogle Scholar
  19. Heikenfeld J, Steckl AJ (2005a) High-transmission electrowetting light valves. Appl Phys Lett 86:151121CrossRefGoogle Scholar
  20. Heikenfeld J, Steckl AJ (2005b) Intense switchable fluorescence in light wave coupled electrowetting devices. Appl Phys Lett 86:011105CrossRefGoogle Scholar
  21. Hsieh J, Mach P, Cattaneo F, Yang S, Krupenkine T, Baldwin K, Rogers JA (2003) Tunable microfluidic optical-fiber devices based on electrowetting pumps and plastic microchannels. IEEE Photonics Technol Lett 15:81CrossRefGoogle Scholar
  22. Jeon NL, Dertinger SKW, Chiu DT, Choi IS, Stroock AD, Whitesides GM (2000) Generation of solution and surface gradients using microfluidic systems. Langmuir 16:8311CrossRefGoogle Scholar
  23. Knollman GC, Bellin JLS, Weaver JL (1971) Variable-focus liquid filled hydroacoustic lens. J Acoust Soc Am 49:253CrossRefGoogle Scholar
  24. Krogmann F, Mönch W, Zappe H (2006) A MEMS-based variable micro-lens system. J Opt A Pure Appl Opt 8:330CrossRefGoogle Scholar
  25. Krupenkin T, Yang S, Mach P (2003) Tunable liquid microlens. Appl Phys Lett 82:316CrossRefGoogle Scholar
  26. Kuiper S, Hendriks BHW (2004) Variable-focus liquid lens for miniature cameras. Appl Phys Lett 85:1128CrossRefGoogle Scholar
  27. Laser DJ, Santiago JG (2004) A review of micropumps. J Micromech Microeng 14:35CrossRefGoogle Scholar
  28. Levy U, Campbell K, Groisman A, Mookherjea S, Fainman Y (2006) On-chip microfluidic tuning of an optical microring resonator. Appl Phys Lett 88:111107CrossRefGoogle Scholar
  29. Li Z, Zhang Z, Scherer A, Psaltis D (2006) Mechanically tunable optofluidic distributed feedback dye laser. Opt Express 14:10494CrossRefGoogle Scholar
  30. Mach P, Krupenkin T, Yang S, Rogers JA (2002a) Dynamic tuning of optical waveguides with electrowetting pumps and recirculating fluid channels. Appl Phys Lett 81:202CrossRefGoogle Scholar
  31. Mach P, Dolinski M, Baldwin KW, Rogers JA, Kerbage C, Windeler RS, Eggleton BJ (2002b) Tunable microfluidic optical fiber. Appl Phys Lett 80:4294CrossRefGoogle Scholar
  32. Monat C, Domachuk P, Eggleton BJ (2007) Integrated optofluidics: a new river of light. Nature Photonics 1:106CrossRefGoogle Scholar
  33. Mugele F, Baret JC (2005) Electrowetting: from basics to applications. J Phys Condens Matter 17:705CrossRefGoogle Scholar
  34. Mugele F, Baret JC, Steinhauser D (2006) Microfluidic mixing through electrowetting-induced droplet oscillations. Appl Phys Lett 88:204106CrossRefGoogle Scholar
  35. Naumov AF, Loktev MY, Guralnik IR, Vdovin G (1998) Liquid-crystal adaptive lenses with modal control. Opt Lett 23:992Google Scholar
  36. Pang L, Levy U, Campbell K, Groisman A, Fainman Y (2005) A set of two orthogonal adaptive cylindrical lenses in a monolith elastomer device. Opt Express 13:9003CrossRefGoogle Scholar
  37. Psaltis D, Quake SR, Yang C (2006) Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442:381CrossRefGoogle Scholar
  38. Ren H, Wu JR, Fan YH, Lin YH, Wu ST (2005) Hermaphroditic liquid-crystal microlens. Opt Lett 30:376CrossRefGoogle Scholar
  39. Ren H, Fox D, Anderson PA, Wu B, Wu ST (2006) Tunable-focus liquid lens controlled using a servo motor. Opt Express 14:8031CrossRefGoogle Scholar
  40. Sato S (1979) Liquid-crystal lens-cells with variable focal length. Jpn J Appl Phys 18:1679CrossRefGoogle Scholar
  41. Smith NR, Abeysinghe DC, Haus JW, Heikenfeld J (2006) Agile wide-angle beam steering with electrowetting microprisms. Opt Express 14:6557CrossRefGoogle Scholar
  42. Tang SKY, Mayers BT, Vezenov DV, Whitesides GM (2006) Optical waveguiding using thermal gradients across homogeneous liquids in microfluidic channels. Appl Phys Lett 88:061112CrossRefGoogle Scholar
  43. Unger MA, Chou HP, Thorsen T, Scherer A, Quake SR (2000) Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288:113CrossRefGoogle Scholar
  44. Wan Z, Zeng H, Feinerman A (2006) Area-tunable micromirror based on electrowetting actuation of liquid-metal droplets. Appl Phys Lett 89:201107CrossRefGoogle Scholar
  45. Werber A, Zappe H (2005) Tunable microfluidic microlenses. Appl Opt 44:3238CrossRefGoogle Scholar
  46. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368CrossRefGoogle Scholar
  47. Wolfe DB, Conroy RS, Garstecki P, Mayers BT, Fischbach MA, Paul KE, Prentiss M, Whitesides GM (2004) Dynamic control of liquid-core/liquid-cladding optical waveguides. PNAS 101:12434CrossRefGoogle Scholar
  48. Wright BM (1968) UK Patent No. 1,209,234Google Scholar
  49. Xia YN, Whitesides GM (1998) Soft lithography. Annu Rev Mater Sci 28:153CrossRefGoogle Scholar
  50. Zhang DY, Lien V, Berdichevsky Y, Choi J, Lo YH (2003) Fluidic adaptive lens with high focal length tunability. Appl Phys Lett 82:3171CrossRefGoogle Scholar
  51. Zhang DY, Justis N, Lo YH (2004a) Fluidic adaptive lens of transformable lens type. Appl Phys Lett 84:4194CrossRefGoogle Scholar
  52. Zhang DY, Justis N, Lien N, Berdichevsky Y, Lo YH (2004b) High-performance fluidic adaptive lenses. Appl Opt 43:783CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of Applied Physics, The Benin School of Engineering and Computer ScienceThe Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations