Microfluidics and Nanofluidics

, Volume 4, Issue 1–2, pp 97–105 | Cite as

Tunable optofluidic devices



The emerging field of optofluidics provides exciting opportunities for the realization of tunable optofluidic devices (TODs) using a large variety of physical mechanisms. This is because microfluidics is a promising technology for achieving a high degree of tunability—a capability that is not available in many of the current optical devices. In addition, microfluidics holds a great potential for rapid prototyping, miniaturization and integration. TODs already find commercial applications in various fields such as display and imaging, and are expected to become a key player in future optical systems for biology, medicine, communication and information processing. We review the recent progress in the field and discuss potential future directions.


  1. Berge B, Peseux J (2000) Variable focal lens controlled by an external voltage: an application of electrowetting. Eur Phys J E 3:159CrossRefGoogle Scholar
  2. Berreman DW (1980) US Patent No. 4,190,330Google Scholar
  3. Berry S, Kedzierski J, Abedian B (2006) Low voltage electrowetting using thin fluoroploymer films. J Colloid Interface Sci 303:517CrossRefGoogle Scholar
  4. Bilenberg B, Rasmussen T, Balslev S, Kristensen A (2006) Real-time tunability of chip-based light source enabled by micro-fluidic mixing. J Appl Phys 99:023102CrossRefGoogle Scholar
  5. Brown M, Vestad T, Oakey J, Marr DWM (2006) Optical waveguides via viscosity-mismatched microfluidic flows. Appl Phys Lett 88:134109CrossRefGoogle Scholar
  6. Campbell K, Groisman A, Levy U, Pang L, Mookherjea S, Psaltis D, Fainman Y (2004) A microfluidic 2 × 2 optical switch. Appl Phys Lett 85:6119CrossRefGoogle Scholar
  7. Campbell K, Levy U, Fainman Y, Groisman A (2006) Pressure-driven devices with lithographically fabricated composite epoxy-elastomer membranes. Appl Phys Lett 89:154105CrossRefGoogle Scholar
  8. Chiou PY, Chang Z, Wu MC (2003) Pico liter droplet manipulation based on a novel continuous opto- electrowetting mechanism. In: Proceedings IEEE twelfth international conference on solid-state sensors, actuators and microsystems (Transducers '03), pp 557–562Google Scholar
  9. Chronis N, Liu GL, Jeong KH, Lee LP (2003) Tunable liquid-filled microlens array integrated with microfluidic network. Opt Express 11:2370CrossRefGoogle Scholar
  10. Commander LG, Day SE, Selviah DR (2000) Variable focal length microlenses. Opt Commun 177:157CrossRefGoogle Scholar
  11. Domachuk P, Cronin-Golomb M, Eggleton BJ, Mutzenich S, Rosengarten G, Mitchell A (2005) Application of optical trapping to beam manipulation in optofluidics. Opt Express 13:7265CrossRefGoogle Scholar
  12. Egatz-Gómez A, Melle S, García AA, Lindsay SA, Márquez M, Domínguez-García P, Rubio MA, Picraux ST, Taraci JL, Clement T, Yang D, Hayes MA, Gust D (2006) Discrete magnetic microfluidics. Appl Phys Lett 89:129902CrossRefGoogle Scholar
  13. Erickson D, Rockwood T, Emery T, Scherer A, Psaltis D (2006) Nanofluidic tuning of photonic crystal circuits. Opt Lett 31:59CrossRefGoogle Scholar
  14. Galas JC, Torres J, Belotti M, Kou Q, Chen Y (2005) Microfluidic tunable dye laser with integrated mixer and ring resonator. Appl Phys Lett 86:264101CrossRefGoogle Scholar
  15. Garstecki P, Fischbach MA, Whitesides GM (2005) Design for mixing using bubbles in branched microfluidic channels. Appl Phys Lett 86:244108CrossRefGoogle Scholar
  16. Gersborg-Hansen M, Balslev S, Mortensen NA, A. Kristensen A (2005) A coupled cavity micro fluidic dye ring laser. Microelectro Eng 78–79:185CrossRefGoogle Scholar
  17. Gray S (1697) A letter from Mr. Stephen Gray, from Canterbury, May the 12th 1697, concerning making water subservient to the viewing both near, distant objects, with the description of a natural reflecting microscope. Philos Trans (1683–1775) 19:539CrossRefGoogle Scholar
  18. Hayes RA, Feenstra BJ (2003) Video-speed electronic paper based on electrowetting. Nature 425:383CrossRefGoogle Scholar
  19. Heikenfeld J, Steckl AJ (2005a) High-transmission electrowetting light valves. Appl Phys Lett 86:151121CrossRefGoogle Scholar
  20. Heikenfeld J, Steckl AJ (2005b) Intense switchable fluorescence in light wave coupled electrowetting devices. Appl Phys Lett 86:011105CrossRefGoogle Scholar
  21. Hsieh J, Mach P, Cattaneo F, Yang S, Krupenkine T, Baldwin K, Rogers JA (2003) Tunable microfluidic optical-fiber devices based on electrowetting pumps and plastic microchannels. IEEE Photonics Technol Lett 15:81CrossRefGoogle Scholar
  22. Jeon NL, Dertinger SKW, Chiu DT, Choi IS, Stroock AD, Whitesides GM (2000) Generation of solution and surface gradients using microfluidic systems. Langmuir 16:8311CrossRefGoogle Scholar
  23. Knollman GC, Bellin JLS, Weaver JL (1971) Variable-focus liquid filled hydroacoustic lens. J Acoust Soc Am 49:253CrossRefGoogle Scholar
  24. Krogmann F, Mönch W, Zappe H (2006) A MEMS-based variable micro-lens system. J Opt A Pure Appl Opt 8:330CrossRefGoogle Scholar
  25. Krupenkin T, Yang S, Mach P (2003) Tunable liquid microlens. Appl Phys Lett 82:316CrossRefGoogle Scholar
  26. Kuiper S, Hendriks BHW (2004) Variable-focus liquid lens for miniature cameras. Appl Phys Lett 85:1128CrossRefGoogle Scholar
  27. Laser DJ, Santiago JG (2004) A review of micropumps. J Micromech Microeng 14:35CrossRefGoogle Scholar
  28. Levy U, Campbell K, Groisman A, Mookherjea S, Fainman Y (2006) On-chip microfluidic tuning of an optical microring resonator. Appl Phys Lett 88:111107CrossRefGoogle Scholar
  29. Li Z, Zhang Z, Scherer A, Psaltis D (2006) Mechanically tunable optofluidic distributed feedback dye laser. Opt Express 14:10494CrossRefGoogle Scholar
  30. Mach P, Krupenkin T, Yang S, Rogers JA (2002a) Dynamic tuning of optical waveguides with electrowetting pumps and recirculating fluid channels. Appl Phys Lett 81:202CrossRefGoogle Scholar
  31. Mach P, Dolinski M, Baldwin KW, Rogers JA, Kerbage C, Windeler RS, Eggleton BJ (2002b) Tunable microfluidic optical fiber. Appl Phys Lett 80:4294CrossRefGoogle Scholar
  32. Monat C, Domachuk P, Eggleton BJ (2007) Integrated optofluidics: a new river of light. Nature Photonics 1:106CrossRefGoogle Scholar
  33. Mugele F, Baret JC (2005) Electrowetting: from basics to applications. J Phys Condens Matter 17:705CrossRefGoogle Scholar
  34. Mugele F, Baret JC, Steinhauser D (2006) Microfluidic mixing through electrowetting-induced droplet oscillations. Appl Phys Lett 88:204106CrossRefGoogle Scholar
  35. Naumov AF, Loktev MY, Guralnik IR, Vdovin G (1998) Liquid-crystal adaptive lenses with modal control. Opt Lett 23:992Google Scholar
  36. Pang L, Levy U, Campbell K, Groisman A, Fainman Y (2005) A set of two orthogonal adaptive cylindrical lenses in a monolith elastomer device. Opt Express 13:9003CrossRefGoogle Scholar
  37. Psaltis D, Quake SR, Yang C (2006) Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442:381CrossRefGoogle Scholar
  38. Ren H, Wu JR, Fan YH, Lin YH, Wu ST (2005) Hermaphroditic liquid-crystal microlens. Opt Lett 30:376CrossRefGoogle Scholar
  39. Ren H, Fox D, Anderson PA, Wu B, Wu ST (2006) Tunable-focus liquid lens controlled using a servo motor. Opt Express 14:8031CrossRefGoogle Scholar
  40. Sato S (1979) Liquid-crystal lens-cells with variable focal length. Jpn J Appl Phys 18:1679CrossRefGoogle Scholar
  41. Smith NR, Abeysinghe DC, Haus JW, Heikenfeld J (2006) Agile wide-angle beam steering with electrowetting microprisms. Opt Express 14:6557CrossRefGoogle Scholar
  42. Tang SKY, Mayers BT, Vezenov DV, Whitesides GM (2006) Optical waveguiding using thermal gradients across homogeneous liquids in microfluidic channels. Appl Phys Lett 88:061112CrossRefGoogle Scholar
  43. Unger MA, Chou HP, Thorsen T, Scherer A, Quake SR (2000) Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288:113CrossRefGoogle Scholar
  44. Wan Z, Zeng H, Feinerman A (2006) Area-tunable micromirror based on electrowetting actuation of liquid-metal droplets. Appl Phys Lett 89:201107CrossRefGoogle Scholar
  45. Werber A, Zappe H (2005) Tunable microfluidic microlenses. Appl Opt 44:3238CrossRefGoogle Scholar
  46. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368CrossRefGoogle Scholar
  47. Wolfe DB, Conroy RS, Garstecki P, Mayers BT, Fischbach MA, Paul KE, Prentiss M, Whitesides GM (2004) Dynamic control of liquid-core/liquid-cladding optical waveguides. PNAS 101:12434CrossRefGoogle Scholar
  48. Wright BM (1968) UK Patent No. 1,209,234Google Scholar
  49. Xia YN, Whitesides GM (1998) Soft lithography. Annu Rev Mater Sci 28:153CrossRefGoogle Scholar
  50. Zhang DY, Lien V, Berdichevsky Y, Choi J, Lo YH (2003) Fluidic adaptive lens with high focal length tunability. Appl Phys Lett 82:3171CrossRefGoogle Scholar
  51. Zhang DY, Justis N, Lo YH (2004a) Fluidic adaptive lens of transformable lens type. Appl Phys Lett 84:4194CrossRefGoogle Scholar
  52. Zhang DY, Justis N, Lien N, Berdichevsky Y, Lo YH (2004b) High-performance fluidic adaptive lenses. Appl Opt 43:783CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of Applied Physics, The Benin School of Engineering and Computer ScienceThe Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations