Microfluidics and Nanofluidics

, Volume 4, Issue 6, pp 471–487

Electrohydrodynamics around single ion-permselective glass beads fixed in a microfluidic device

  • Steffen Ehlert
  • Dzmitry Hlushkou
  • Ulrich Tallarek
Research Paper


This work demonstrates by direct visualization using confocal laser scanning microscopy that the application of electrical fields to a single-fixed, ion-permselective glass bead produces a remarkable complexity in both the coupled mass and charge transport through the bead and the coupled electrokinetics and hydrodynamics in the adjoining bulk electrolyte. The visualization approach enables the acquisition of a wealth of information, forming the basis for a detailed analysis of the underlying effects (e.g., ion-permselectivity, concentration polarization, nonequilibrium electroosmotic slip) and an understanding of electrohydrodynamic phenomena at charge-selective interfaces under more general conditions. The device used for fixing single beads in a microfluidic channel is flexible and allows to investigate the electrohydrodynamics in both transient and stationary regimes under the influence of bead shape, pore size and surface charge density, mobile phase composition, and applied volume forces. This insight is relevant for the design of microfluidic/nanofluidic interconnections and addresses the ionic conductance of discrete nanochannels, as well as nanoporous separation and preconcentration units contained as hybrid configurations, membranes, packed beds, or monoliths in lab-on-a-chip devices.


Electrical double layer Ion-permselectivity Concentration polarization Electroosmotic flow Nonlinear electroosmosis Electrohydrodynamics Microvortex 


  1. Barany S (1998) Complex electrosurface investigations of dispersed microphases. Adv Colloid Interface Sci 75:45–78CrossRefGoogle Scholar
  2. Barany S, Mishchuk NA, Prieve DC (1998) Superfast electrophoresis of conducting dispersed particles. J Colloid Interface Sci 207:240–250CrossRefGoogle Scholar
  3. Belova EI, Lopatkova GY, Pismenskaya ND, Nikonenko VV, Larchet C, Pourcelly G (2006) Effect of anion-exchange membrane surface properties on mechanisms of overlimiting mass transfer. J Phys Chem B 110:13458–13469CrossRefGoogle Scholar
  4. Ben Y, Chang HC (2002) Nonlinear Smoluchowski slip velocity and micro-vortex generation. J Fluid Mech 461:229–238CrossRefMathSciNetMATHGoogle Scholar
  5. Ben Y, Demekhin EA, Chang HC (2004) Nonlinear electrokinetics and “superfast” electrophoresis. J Colloid Interface Sci 276:483–497CrossRefGoogle Scholar
  6. Chang H, Venkatesan BM, Iqbal SM, Andreadakis G, Kosari F, Vasmatzis G, Peroulis D, Bashir R (2006) DNA counterion current and saturation examined by a MEMS-based solid state nanopore sensor. Biomed Microdevices 8:263–269CrossRefGoogle Scholar
  7. Chatterjee AN, Cannon DM, Gatimu EN, Sweedler JV, Aluru NR, Bohn PW (2005) Modeling and simulation of ionic currents in three-dimensional microfluidic devices with nanofluidic interconnects. J Nanopart Res 7:507–516CrossRefGoogle Scholar
  8. Chen Z, Wang P, Chang HC (2005) An electroosmotic micropump based on monolithic silica for microflow analysis and electrosprays. Anal Bioanal Chem 382:817–824CrossRefGoogle Scholar
  9. Choi JH, Kim SH, Moon SH (2001a) Heterogeneity of ion-exchange membranes: the effects of membrane heterogeneity on transport properties. J Colloid Interface Sci 241:120–126CrossRefGoogle Scholar
  10. Choi JH, Lee HJ, Moon SH (2001b) Effects of electrolytes on the transport phenomena in a cation-exchange membrane. J Colloid Interface Sci 238:188–195CrossRefGoogle Scholar
  11. Choudhary G, Horváth C (1997) Dynamics of capillary electrochromatography: experimental study of the electroosmotic flow and conductance in open and packed capillaries. J Chromatogr A 781:161–183CrossRefGoogle Scholar
  12. Cui H, Horiuchi K, Dutta P, Ivory CF (2005) Multistage isoelectric focusing in a polymeric microfluidic chip. Anal Chem 77:7878–7886CrossRefGoogle Scholar
  13. Daiguji H, Yang P, Majumdar A (2004) Ion transport in nanofluidic channels. Nano Lett 4:137–142CrossRefGoogle Scholar
  14. Deyl Z, Svec F (2001) Capillary electrochromatography. Elsevier, AmsterdamGoogle Scholar
  15. Dittmann MM, Wienand K, Bek F, Rozing GP (1995) Theory and practice of capillary electrochromatography. LC GC 13:800–814Google Scholar
  16. Dhopeshwarkar R, Sun L, Crooks RM (2005) Electrokinetic concentration enrichment within a microfluidic device using a hydrogel plug. Lab Chip 5:1148–1154CrossRefGoogle Scholar
  17. Dukhin SS (1991) Electrokinetic phenomena of the second kind and their applications. Adv Colloid Interface Sci 35:173–196CrossRefGoogle Scholar
  18. Eijkel JCT, van den Berg A (2006) Nanotechnology for membranes, filters, and sieves. Lab Chip 6:19–23CrossRefGoogle Scholar
  19. Foote RS, Khandurina J, Jacobson SC, Ramsey JM (2005) Preconcentration of proteins in microfluidic devices using porous silica membranes. Anal Chem 77:57–63CrossRefGoogle Scholar
  20. Ghosal S (2006) Electrokinetic flow and dispersion in capillary electrophoresis. Annu Rev Fluid Mech 38:309–338CrossRefMathSciNetGoogle Scholar
  21. Hatch AV, Herr AE, Throckmorton DJ, Brennan JS, Singh AK (2006) Integrated preconcentration SDS-PAGE of proteins in microchips using photopatterned cross-linked polyacrylamide gels. Anal Chem 78:4976–4984CrossRefGoogle Scholar
  22. Helfferich F (1995) Ion exchange. Dover, New YorkGoogle Scholar
  23. Hlushkou D, Seidel-Morgenstern A, Tallarek U (2005) Numerical analysis of electroosmotic flow in regular and random arrays of impermeable, nonconducting spheres. Langmuir 21:6097–6112CrossRefGoogle Scholar
  24. Höltzel A, Tallarek U (2007) Ionic conductance of nanopores in microscale analysis systems: where microfluidics meets nanofluidics. J Sep Sci 30:1398–1419CrossRefGoogle Scholar
  25. Hu YD, Lee JSH, Werner C, Li DQ (2006) Electrokinetically controlled concentration gradients in micro-chambers in microfluidic systems. Microfluid Nanofluid 2:141–153CrossRefGoogle Scholar
  26. Ibanez R, Stamatialis DF, Wessling M (2004) Role of membrane surface in concentration polarization at cation exchange membranes. J Memb Sci 239:119–128CrossRefGoogle Scholar
  27. Jung B, Bharadwaj R, Santiago JG (2006) On-chip millionfold sample stacking using transient isotachophoresis. Anal Chem 78:2319–2327CrossRefGoogle Scholar
  28. Kang YJ, Yang C, Huang XY (2005) Analysis of electroosmotic flow in a microchannel packed with microspheres. Microfluid Nanofluid 1:168–176CrossRefGoogle Scholar
  29. Kelly RT, Woolley AT (2005) Electric field gradient focusing. J Sep Sci 28:1985–1993CrossRefGoogle Scholar
  30. Kim SM, Burns MA, Hasselbrink EF (2006) Electrokinetic protein preconcentration using a simple glass/poly(dimethylsiloxane) microfluidic chip. Anal Chem 78:4779–4785CrossRefGoogle Scholar
  31. Kirby BJ, Hasselbrink EF (2004) Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations. Electrophoresis 25:187–202CrossRefGoogle Scholar
  32. Kuo TC, Cannon DM, Chen Y, Tulock JJ, Shannon MA, Sweedler JV, Bohn PW (2003) Gateable nanofluidic interconnects for multilayered microfluidic separation systems. Anal Chem 75:1861–1867CrossRefGoogle Scholar
  33. Laser DJ, Santiago JG (2004) A review of micropumps. J Micromech Microeng 14:R35–R64CrossRefGoogle Scholar
  34. Li D (2004) Electrokinetics in microfluidics. Elsevier, BurlingtonCrossRefGoogle Scholar
  35. Li QL, Fang YF, Green ME (1983) Turbulent light-scattering fluctuation spectra near a cation electrodialysis membrane. J Colloid Interface Sci 91:412–417CrossRefGoogle Scholar
  36. Leinweber FC, Tallarek U (2004) Nonequilibrium electrokinetic effects in beds of ion-permselective particles. Langmuir 20:11637–11648CrossRefGoogle Scholar
  37. Leinweber FC, Tallarek U (2005) Concentration polarization-based nonlinear electrokinetics in porous media: induced-charge electroosmosis. J Phys Chem B 109:21481–21485CrossRefGoogle Scholar
  38. Leinweber FC, Pfafferodt M, Seidel-Morgenstern A, Tallarek U (2005) Electrokinetic effects on the transport of charged analytes in biporous media with discrete ion-permselective regions. Anal Chem 77:5839–5850CrossRefGoogle Scholar
  39. Lyklema J (1995) Fundamentals of colloid and interface science, vol II: solid–liquid interfaces. Academic, San DiegoGoogle Scholar
  40. Manzanares JA, Kontturi K, Mafé S, Aguilella VM, Pellicer J (1991) Polarization effects at the cation-exchange–membrane solution interface. Acta Chem Scand 45:115–121CrossRefGoogle Scholar
  41. Manzanares JA, Murphy WD, Mafé S, Reiss H (1993) Numerical simulation of the nonequilibrium diffuse double layer in ion-exchange membranes. J Phys Chem 97:8524–8530CrossRefGoogle Scholar
  42. Mishchuk NA, Dukhin SS (2002) Electrokinetic phenomena of the second kind. In: Delgado AV (ed) Interfacial electrokinetics and electrophoresis. Marcel Dekker, New York, pp 241–275Google Scholar
  43. Mishchuk NA, Takhistov PV (1995) Electroosmosis of the second kind. Colloids Surf A 95:119–131CrossRefGoogle Scholar
  44. Mishchuk NA, Gonzalez-Caballero F, Takhistov P (2001) Electroosmosis of the second kind and current through curved interface. Colloids Surf A 181:131–144CrossRefGoogle Scholar
  45. Mulligan CN, Yong RN, Gibbs BF (2001) Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Eng Geol 60:193–207CrossRefGoogle Scholar
  46. Nischang I, Tallarek U (2007) Fluid dynamics in capillary and chip electrochromatography. Electrophoresis 28:611–626CrossRefGoogle Scholar
  47. Nischang I, Chen G, Tallarek U (2006a) Electrohydrodynamics in hierarchically structured monolithic and particulate fixed beds. J Chromatogr A 1109:32–50CrossRefGoogle Scholar
  48. Nischang I, Spannmann K, Tallarek U (2006b) Key to analyte migration and retention in electrochromatography. Anal Chem 78:3601–3608CrossRefGoogle Scholar
  49. Probstein RF (1994) Physicochemical hydrodynamics. Wiley, New YorkGoogle Scholar
  50. Pumera M (2005) Microchip-based electrochromatography: designs and applications. Talanta 66:1048–1062CrossRefGoogle Scholar
  51. Raats MHM, van Diemen AJG, Lavèn J, Stein HN (2002) Full scale electrokinetic dewatering of waste sludge. Colloids Surf A 210:231–241CrossRefGoogle Scholar
  52. Rubinstein I, Zaltzman B (1999) Electroconvective mechanisms in concentration polarization at electrodialysis membranes. In: Sørensen TS (ed) Surface chemistry and electrochemistry of membranes. Marcel Dekker, New York, pp 591–621Google Scholar
  53. Rubinstein I, Zaltzman B (2000) Electroosmotically induced convection at a permselective membrane. Phys Rev E 62:2238–2251CrossRefMathSciNetGoogle Scholar
  54. Rubinstein I, Zaltzman B, Pretz J, Linder C (2002) Experimental verification of the electroosmotic mechanism of overlimiting conductance through a cation exchange electrodialysis membrane. Russ J Electrochem 38:853–863CrossRefGoogle Scholar
  55. Rubinstein I, Zaltzman B, Lerman I (2005) Electroconvective instability in concentration polarization and nonequilibrium electroosmotic slip. Phys Rev E 72:011505CrossRefGoogle Scholar
  56. Saichek RE, Reddy KR (2005) Electrokinetically enhanced remediation of hydrophobic organic compounds in soils: a review. Crit Rev Environ Sci Technol 35:115–192CrossRefGoogle Scholar
  57. Schmuhl R, Nijdam W, Sekulić J, Roy Chowdhury S, van Rijn CJM, van den Berg A, ten Elshof JE, Blank DHA (2005) Si-supported mesoporous and microporous oxide interconnects as electrophoretic gates for application in microfluidic devices. Anal Chem 77:178–184CrossRefGoogle Scholar
  58. Schmuhl R, van den Berg A, Blank DHA, ten Elshof JE (2006) Surfactant-modulated switching of molecular transport in nanometer-sized pores of membrane gates. Angew Chem Int Ed Engl 45:3341–3345CrossRefGoogle Scholar
  59. Sinton D (2004) Microscale flow visualization. Microfluid Nanofluid 1:2–21CrossRefGoogle Scholar
  60. Siwy ZS (2006) Ion-current rectification in nanopores and nanotubes with broken symmetry. Adv Funct Mater 16:735–746CrossRefGoogle Scholar
  61. Smeets RMM, Keyser UF, Krapf D, Wu MY, Dekker NH, Dekker C (2006) Salt dependence of ion transport and DNA translocation through solid-state nanopores. Nano Lett 6:89–95CrossRefGoogle Scholar
  62. Stachowiak TB, Svec F, Fréchet JMJ (2004) Chip electrochromatography. J Chromatogr A 1044:97–111CrossRefGoogle Scholar
  63. Stone HA, Stroock AD, Ajdari A (2004) Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu Rev Fluid Mech 36:381–411CrossRefGoogle Scholar
  64. Svec F (2005) Recent developments in the field of monolithic stationary phases for capillary electrochromatography. J Sep Sci 28:729–745CrossRefGoogle Scholar
  65. Tallarek U, Pačes M, Rapp E (2003) Perfusive flow and intraparticle distribution of a neutral analyte in capillary electrochromatography. Electrophoresis 24:4241–4253CrossRefGoogle Scholar
  66. Verpoorte E, de Rooij N (2003) Microfluidics meets MEMS. Proc IEEE 91:930–953CrossRefGoogle Scholar
  67. Virkutyte J, Sillanpaa M, Latostenmaa P (2002) Electrokinetic soil remediation: critical overview. Sci Total Environ 289:97–121CrossRefGoogle Scholar
  68. Volodina E, Pismenskaya N, Nikonenko V, Larchet C, Pourcelly G (2005) Ion transfer across ion-exchange membranes with homogeneous and heterogeneous surfaces. J Colloid Interface Sci 285:247–258CrossRefGoogle Scholar
  69. Wang SC, Lai YW, Ben Y, Chang HC (2004) Microfluidic mixing by dc and ac nonlinear electrokinetic vortex flows. Ind Eng Chem Res 43:2902–2911CrossRefGoogle Scholar
  70. Wang YC, Stevens AL, Han J (2005) Million-fold preconcentation of proteins and peptides by nanofluidic filter. Anal Chem 77:4293–4299CrossRefGoogle Scholar
  71. Wang P, Chen ZL, Chang HC (2006) A new electroosmotic pump based on silica monoliths. Sens Actuators B 113:500–509CrossRefGoogle Scholar
  72. Wong PK, Wang TH, Deval JH, Ho CM (2004) Electrokinetics in micro devices for biotechnology applications. IEEE ASME Trans Mechatron 9:366–376CrossRefGoogle Scholar
  73. Yao SH, Myers AM, Posner JD, Rose KA, Santiago JG (2006) Electroosmotic pumps fabricated from porous silicon membranes. J Microelectromech Syst 15:717–728CrossRefGoogle Scholar
  74. Yu A, Lee SB, Martin CR (2003) Electrophoretic protein transport in gold nanotube membranes. Anal Chem 75:1239–1244CrossRefGoogle Scholar
  75. Zabolotsky VI, Manzanares JA, Nikonenko VV, Lebedev KA, Lovtsov EG (2002) Space charge effect on competitive ion transport through ion-exchange membranes. Desalination 147:387–392CrossRefGoogle Scholar
  76. Zabolotsky VI, Lebedev KA, Lovtsov EG (2006) Mathematical model for the overlimiting state of an ion-exchange membrane system. Russ J Electrochem 42:836–846CrossRefGoogle Scholar
  77. Zilberstein GV, Baskin EM, Bukshpan S (2003) Parallel processing in the isoelectric focusing chip. Electrophoresis 24:3735–3744CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Steffen Ehlert
    • 1
  • Dzmitry Hlushkou
    • 1
  • Ulrich Tallarek
    • 1
    • 2
  1. 1.Institut für VerfahrenstechnikOtto-von-Guericke-Universität MagdeburgMagdeburgGermany
  2. 2.Department of ChemistryPhilipps-Universität MarburgMarburgGermany

Personalised recommendations