Microfluidics and Nanofluidics

, Volume 4, Issue 1–2, pp 33–52

Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale

  • David Erickson
  • Sudeep Mandal
  • Allen H. J. Yang
  • Bernardo Cordovez
Review Paper


Next generation biosensor platforms will require significant improvements in sensitivity, specificity and parallelity in order to meet the future needs of a variety of fields ranging from in vitro medical diagnostics, pharmaceutical discovery and pathogen detection. Nanobiosensors, which exploit some fundamental nanoscopic effect in order to detect a specific biomolecular interaction, have now been developed to a point where it is possible to determine in what cases their inherent advantages over traditional techniques (such as nucleic acid microarrays) more than offset the added complexity and cost involved constructing and assembling the devices. In this paper we will review the state of the art in nanoscale biosensor technologies, focusing primarily on optofluidic type devices but also covering those which exploit fundamental mechanical and electrical transduction mechanisms. A detailed overview of next generation requirements is presented yielding a series of metrics (namely limit of detection, multiplexibility, measurement limitations, and ease of fabrication/assembly) against which the various technologies are evaluated. Concluding remarks regarding the likely technological impact of some of the promising technologies are also provided.


Nanobiosensors Biosensors Optofluidics Nanotechnology Photonic crystal Surface plasmon resonance Nanowire Cantilever 


  1. Armani AM, Vahala KJ (2006) Heavy water detection using ultra-high-Q microcavities. Opt Lett 31(12):1896–1898Google Scholar
  2. Armani DK, Kippenberg TJ, Spillane SM, Vahala KJ (2003) Ultra-high-Q toroid microcavity on a chip. Nature 421(6926):925–928Google Scholar
  3. Arnold S, Khoshsima M, Teraoka I, Holler S, Vollmer F (2003) Shift of whispering-gallery modes in microspheres by protein adsorption. Opt Lett 28(4):272–274Google Scholar
  4. Aslan K, Lakowicz JR, Geddes CD (2004) Nanogold-plasmon-resonance-based glucose sensing. Anal Biochem 330(1):145–155Google Scholar
  5. Bard A (2001) Electrochemical methods: fundamentals and applications. Wiley, New YorkGoogle Scholar
  6. Bauer LA, Birenbaum NS, Meyer GJ (2004) Biological applications of high aspect ratio nanoparticles. J Mater Chem 14(4):517–526Google Scholar
  7. Berger CEH, Kooyman RPH, Greve J (1994) Resolution in surface-plasmon microscopy. Rev Sci Instrum 65(9):2829–2836Google Scholar
  8. Besteman K, Lee JO, Wiertz FGM, Heering HA, Dekker C (2003) Enzyme-coated carbon nanotubes as single-molecule biosensors. Nano Lett 3(6):727–730Google Scholar
  9. Boussaad S, Tao NJ, Zhang R, Hopson T, Nagahara LA (2003) In situ detection of cytochrome c adsorption with single walled carbon nanotube device. Chem Commun 13:1502–1503Google Scholar
  10. Boyd RW, Heebner JE (2001) Sensitive disk resonator photonic biosensor. Appl Opt 40(31):5742–5747Google Scholar
  11. Brandenburg A (1997) Differential refractometry by an integrated-optical Young interferometer. Sens Actuators B Chem 39(1–3):266–271Google Scholar
  12. Braun T, Barwich V, Ghatkesar MK, Bredekamp AH, Gerber C, Hegner M, Lang HP (2005) Micromechanical mass sensors for biomolecular detection in a physiological environment. Phys Rev E 72:031907Google Scholar
  13. Burg TP, Manalis SR (2003) Suspended microchannel resonators for biomolecular detection. Appl Phys Lett 83(13):2698–2700Google Scholar
  14. Burg TP, Mirza AR, Milovic N, Tsau CH, Popescu GA, Foster JS, Manalis SR (2006) Vacuum-packaged suspended microchannel resonant mass sensor for biomolecular detection. J Microelectromech Syst 15(6):1466–1476Google Scholar
  15. Cao YC, Huang ZL, Liu TC, Wang HQ, Zhu XX, Wang Z, Zhao YD, Liu MX, Luo QM (2006) Preparation of silica encapsulated quantum dot encoded beads for multiplex assay and its properties. Anal Biochem 351(2):193–200Google Scholar
  16. Caruso F (2004) Colloids and colloid assemblies: synthesis, modification, organization and utilization of colloid particles. Wiley-VCH, Weinheim, ChichesterGoogle Scholar
  17. Chah S, Hammond MR, Zare RN (2005) Gold nanoparticles as a colorimetric sensor for protein conformational changes. Chem Biol 12(3):323–328Google Scholar
  18. Chao CY, Fung W, Guo LJ (2006) Polymer microring resonators for biochemical sensing applications. IEEE J Sel Top Quantum Electron 12(1):134–142Google Scholar
  19. Chen RJ, Choi HC, Bangsaruntip S, Yenilmez E, Tang XW, Wang Q, Chang YL, Dai HJ (2004) An investigation of the mechanisms of electronic sensing of protein adsorption on carbon nanotube devices. J Am Chem Soc 126(5):1563–1568Google Scholar
  20. Cheng MMC, Cuda G, Bunimovich YL, Gaspari M, Heath JR, Hill HD, Mirkin CA, Nijdam AJ, Terracciano R, Thundat T, Ferrari M (2006) Nanotechnologies for biomolecular detection and medical diagnostics. Curr Opin Chem Biol 10(1):11–19Google Scholar
  21. Chinowsky TM, Quinn JG, Bartholomew DU, Kaiser R, Elkind JL (2003) Performance of the Spreeta 2000 integrated surface plasmon resonance affinity sensor. Sens Actuators B Chem 91(1–3):266–274Google Scholar
  22. Chow E, Grot A, Mirkarimi LW, Sigalas M, Girolami G (2004) Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity. Opt Lett 29(10):1093–1095Google Scholar
  23. Cleland AN, Roukes ML (1998) A nanometre-scale mechanical electrometer. Nature 392(6672):160–162Google Scholar
  24. Craighead HG (2000) Nanoelectromechanical systems. Science 290(5496):1532–1535Google Scholar
  25. Cui Y, Lieber CM (2001) Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 291(5505):851–853Google Scholar
  26. Cui Y, Wei QQ, Park HK, Lieber CM (2001) Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293(5533):1289–1292Google Scholar
  27. Cunningham AJ (1998) Introduction to bioanalytical sensors. Wiley, New YorkGoogle Scholar
  28. D’Amico A, Di Natale C (2001) A contribution on some basic definitions of sensors properties. IEEE Sens J 1(3):183–190Google Scholar
  29. Dahlin AB, Tegenfeldt JO, Hook F (2006) Improving the instrumental resolution of sensors based on localized surface plasmon resonance. Anal Chem 78(13):4416–4423Google Scholar
  30. Dawson ED, Moore CL, Smagala JA, Dankbar DM, Mehlmann M, Townsend MB, Smith CB, Cox NJ, Kuchta RD, Rowlen KL (2006) MChip: a tool for influenza surveillance. Anal Chem 78(22):7610–7615Google Scholar
  31. Dostalek J, Vaisocherova H, Homola J (2005) Multichannel surface plasmon resonance biosensor with wavelength division multiplexing. Sens Actuators B Chem 108(1–2):758–764Google Scholar
  32. Eggins BR (1996) Biosensors: an introduction. Wiley, New YorkGoogle Scholar
  33. Ekinci KL, Roukes ML (2005) Nanoelectromechanical systems. Rev Sci Instrum 76:6Google Scholar
  34. Ekinci KL, Huang XMH, Roukes ML (2004) Ultrasensitive nanoelectromechanical mass detection. Appl Phys Lett 84(22):4469–4471Google Scholar
  35. Endo T, Kerman K, Nagatani N, Hiepa HM, Kim DK, Yonezawa Y, Nakano K, Tamiya E (2006) Multiple label-free detection of antigen-antibody reaction using localized surface plasmon resonance-based core-shell structured nanoparticle layer nanochip. Anal Chem 78(18):6465–6475Google Scholar
  36. Erickson D, Rockwood T, Emery T, Scherer A, Psaltis D (2006) Nanofluidic tuning of photonic crystal circuits. Opt Lett 31(1):59–61Google Scholar
  37. Evoy S, DiLello N, Deshpande V, Narayanan A, Liu H, Riegelman M, Martin BR, Hailer B, Bradley JC, Weiss W, Mayer TS, Gogotsi Y, Bau HH, Mallouk TE, Raman S (2004) Dielectrophoretic assembly and integration of nanowire devices with functional CMOS operating circuitry. Microelectron Eng 75(1):31–42Google Scholar
  38. Fang SP, Lee HJ, Wark AW, Corn RM (2006) Attomole microarray detection of MicroRNAs by nanoparticle-amplified SPR imaging measurements of surface polyadenylation reactions. J Am Chem Soc 128(43):14044–14046Google Scholar
  39. Gao XH, Nie SM (2004) Quantum dot-encoded mesoporous beads with high brightness and uniformity: rapid readout using flow cytometry. Anal Chem 76(8):2406–2410Google Scholar
  40. Gorodetsky ML, Savchenkov AA, Ilchenko VS (1996) Ultimate Q of optical microsphere resonators. Opt Lett 21(7):453–455Google Scholar
  41. Growdon JH (1999) Biomarkers of Alzheimer disease. Arch Neurol 56(3):281–283Google Scholar
  42. Gu Z, Belzer SW, Gibson CS, Bankowski MJ, Hayden RT (2003) Multiplexed, real-time PCR for quantitative detection of human adenovirus. J Clin Microbiol 41(10):4636–4641Google Scholar
  43. Gupta AK, Nair PR, Akin D, Ladisch MR, Broyles S, Alam MA, Bashir R (2006) Anomalous resonance in a nanomechanical biosensor. Proc Natl Acad Sci USA 103(36):13362–13367Google Scholar
  44. Guzman MG, Kouri G (2004) Dengue diagnosis, advances and challenges. Int J Infect Dis 8(2):69–80Google Scholar
  45. Haes AJ, Van Duyne RP (2002) A nanoscale optical blosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J Am Chem Soc 124(35):10596–10604Google Scholar
  46. Haes AJ, Van Duyne RP (2004) A unified view of propagating and localized surface plasmon resonance biosensors. Anal Bioanal Chem 379(7–8):920–930Google Scholar
  47. Haes AJ, Stuart DA, Nie SM, Van Duyne RP (2004) Using solution-phase nanoparticles, surface-confined nanoparticle arrays and single nanoparticles as biological sensing platforms. J Fluoresc 14(4):355–367Google Scholar
  48. Haes AJ, Chang L, Klein WL, Van Duyne RP (2005) Detection of a biomarker for Alzheimer’s disease from synthetic and clinical samples using a nanoscale optical biosensor. J Am Chem Soc 127(7):2264–2271Google Scholar
  49. Hahm J, Lieber CM (2004) Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Lett 4(1):51–54Google Scholar
  50. Han MY, Gao XH, Su JZ, Nie S (2001) Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotechnol 19(7):631–635Google Scholar
  51. Hangarter CM, Myung NV (2005) Magnetic alignment of nanowires. Chem Mater 17(6):1320–1324Google Scholar
  52. Hanumegowda NM, Stica CJ, Patel BC, White I, Fan XD (2005) Refractometric sensors based on microsphere resonators. Appl Phys Lett 87:201107Google Scholar
  53. Haynes CL, Van Duyne RP (2001) Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J Phys Chem B 105(24):5599–5611Google Scholar
  54. Haynes CL, McFarland AD, Zhao LL, Van Duyne RP, Schatz GC, Gunnarsson L, Prikulis J, Kasemo B, Kall M (2003) Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays. J Phys Chem B 107(30):7337–7342Google Scholar
  55. He PG, Dai LM (2004) Aligned carbon nanotube-DNA electrochemical sensors. Chem Commun 3:348–349Google Scholar
  56. Heideman RG, Lambeck PV (1999) Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach-Zehnder interferometer system. Sens Actuators B Chem 61(1–3):100–127Google Scholar
  57. Hernandez J, Thompson IM (2004) Prostate-specific antigen: a review of the validation of the most commonly used cancer biomarker. Cancer 101(5):894–904Google Scholar
  58. Homola J, Koudela I, Yee SS (1999a) Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison. Sens Actuators B Chem 54(1–2):16–24Google Scholar
  59. Homola J, Yee SS, Gauglitz G (1999b) Surface plasmon resonance sensors: review. Sens Actuators B Chem 54(1–2):3–15Google Scholar
  60. Homola J, Vaisocherova H, Dostalek J, Piliarik M (2005) Multi-analyte surface plasmon resonance biosensing. Methods 37(1):26–36Google Scholar
  61. Huang Y, Duan XF, Wei QQ, Lieber CM (2001) Directed assembly of one-dimensional nanostructures into functional networks. Science 291(5504):630–633Google Scholar
  62. Huang SM, Woodson M, Smalley R, Liu J (2004) Growth mechanism of oriented long single walled carbon nanotubes using “fast-heating” chemical vapor deposition process. Nano Lett 4(6):1025–1028Google Scholar
  63. Huang B, Yu F, Zare RN (2007) Surface plasmon resonance imaging using a high numerical aperture microscope objective. Anal Chem 79(7):2979–2983Google Scholar
  64. Hulteen JC, Vanduyne RP (1995) Nanosphere lithography—a materials general fabrication process for periodic particle array surfaces. J Vac Sci Technol a Vac Surf Films 13(3):1553–1558Google Scholar
  65. Hunter RJ (1981) Zeta potential in colloid science: principles and applications. Academic, LondonGoogle Scholar
  66. Ilchenko VS, Matsko AB (2006) Optical resonators with whispering-gallery modes—Part II: Applications. IEEE J Sel Top Quantum Electron 12(1):15–32Google Scholar
  67. Ilic B, Czaplewski D, Craighead HG, Neuzil P, Campagnolo C, Batt C (2000) Mechanical resonant immunospecific biological detector. Appl Phys Lett 77(3):450–452Google Scholar
  68. Ilic B, Czaplewski D, Zalalutdinov M, Craighead HG, Neuzil P, Campagnolo C, Batt C (2001) Single cell detection with micromechanical oscillators. J Vac Sci Technol B 19(6):2825–2828Google Scholar
  69. Ilic B, Craighead HG, Krylov S, Senaratne W, Ober C, Neuzil P (2004a) Attogram detection using nanoelectromechanical oscillators. J Appl Phys 95(7):3694–3703Google Scholar
  70. Ilic B, Yang Y, Craighead HG (2004b) Virus detection using nanoelectromechanical devices. Appl Phys Lett 85(13):2604–2606Google Scholar
  71. Ilic B, Yang Y, Aubin K, Reichenbach R, Krylov S, Craighead HG (2005) Enumeration of DNA molecules bound to a nanomechanical oscillator. Nano Lett 5(5):925–929Google Scholar
  72. Joannopoulos JD, Meade RD, Winn JW (1995) Photonic crystals: molding the flow of light. Princeton University Press, Princeton, New JerseyMATHGoogle Scholar
  73. Jordan CE, Frutos AG, Thiel AJ, Corn RM (1997) Surface plasmon resonance imaging measurements of DNA hybridization adsorption and streptavidin/DNA multilayer formation at chemically modified gold surfaces. Anal Chem 69(24):4939–4947Google Scholar
  74. Josse F, Bender F, Cernosek RW (2001) Guided shear horizontal surface acoustic wave sensors for chemical and biochemical detection in liquids. Anal Chem 73(24):5937–5944Google Scholar
  75. Jung LS, Campbell CT, Chinowsky TM, Mar MN, Yee SS (1998) Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films. Langmuir 14(19):5636–5648Google Scholar
  76. Kalantar-Zadeh K, Wlodarski W, Chen YY, Fry BN, Galatsis K (2003) Novel Love mode surface acoustic wave based immunosensors. Sens Actuators B Chem 91(1–3):143–147Google Scholar
  77. Karlsson R (2004) SPR for molecular interaction analysis: a review of emerging application areas. J Mol Recognit 17(3):151–161MathSciNetGoogle Scholar
  78. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107(3):668–677Google Scholar
  79. Kim S, Jung JM, Choi DG, Jung HT, Yang SM (2006) Patterned arrays of Au rings for localized surface plasmon resonance. Langmuir 22(17):7109–7112Google Scholar
  80. Kim DK, Kerman K, Saito M, Sathuluri RR, Endo T, Yamamura S, Kwon YS, Tamiya E (2007) Label-free DNA biosensor based on localized surface plasmon resonance coupled with interferometry. Anal Chem 79(5):1855–1864Google Scholar
  81. Kong J, Soh HT, Cassell AM, Quate CF, Dai HJ (1998) Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature 395(6705):878–881Google Scholar
  82. Kong J, Franklin NR, Zhou CW, Chapline MG, Peng S, Cho KJ, Dai HJ (2000) Nanotube molecular wires as chemical sensors. Science 287(5453):622–625Google Scholar
  83. Kopp MU, de Mello AJ, Manz A (1998) Chemical amplification: continuous-flow PCR on a chip. Science 280(5366):1046–1048Google Scholar
  84. Kress-Rogers E (ed) (1997) Handbook of biosensors and electronic noses: medicine, food, and the environment. CRC Press, Boca RatonGoogle Scholar
  85. Krioukov E, Klunder DJW, Driessen A, Greve J, Otto C (2002) Sensor based on an integrated optical microcavity. Opt Lett 27(7):512–514Google Scholar
  86. Lange K, Blaess G, Voigt A, Gotzen R, Rapp M (2006) Integration of a surface acoustic wave biosensor in a microfluidic polymer chip. Biosens Bioelectron 22(2):227–232Google Scholar
  87. Larrimore L, Nad S, Zhou XJ, Abruna H, McEuen PL (2006) Probing electrostatic potentials in solution with carbon nanotube transistors. Nano Lett 6(7):1329–1333Google Scholar
  88. Lee MR, Fauchet PM (2007) Two-dimensional silicon photonic crystal based biosensing platform for protein detection. Opt Express 15(8):4530–4535Google Scholar
  89. Lee HJ, Nedelkov D, Corn RM (2006) Surface plasmon resonance imaging measurements of antibody arrays for the multiplexed detection of low molecular weight protein biomarkers. Anal Chem 78(18):6504–6510Google Scholar
  90. Li HX, Rothberg LJ (2004) Label-free colorimetric detection of specific sequences in genomic DNA amplified by the polymerase chain reaction. J Am Chem Soc 126(35):10958–10961Google Scholar
  91. Li Z, Chen Y, Li X, Kamins TI, Nauka K, Williams RS (2004) Sequence-specific label-free DNA sensors based on silicon nanowires. Nano Lett 4(2):245–247Google Scholar
  92. Li C, Curreli M, Lin H, Lei B, Ishikawa FN, Datar R, Cote RJ, Thompson ME, Zhou CW (2005) Complementary detection of prostate-specific antigen using ln(2)O(3) nanowires and carbon nanotubes. J Am Chem Soc 127(36):12484–12485Google Scholar
  93. Li YA, Wark AW, Lee HJ, Corn RM (2006) Single-nucleotide polymorphism genotyping by nanoparticle-enhanced surface plasmon resonance imaging measurements of surface ligation reactions. Anal Chem 78(9):3158–3164Google Scholar
  94. Lieber CM, Wang ZL (2007) Functional nanowires. MRS Bull 32(2):99–108Google Scholar
  95. Liu RH, Lodes MJ, Nguyen T, Siuda T, Slota M, Fuji HS, McShea A (2006) Validation of a fully integrated microfluidic array device for influenza A subtype identification and sequencing. Anal Chem 78(12):4184–4193Google Scholar
  96. Lou JY, Tong LM, Ye ZZ (2005) Modeling of silica nanowires for optical sensing. Opt Express 13(6):2135–2140Google Scholar
  97. Lu PS (2006) Early diagnosis of avian influenza. Science 312(5772):337–337Google Scholar
  98. Lucklum R, Hauptmann P (2006) Acoustic microsensors—the challenge behind microgravimetry. Anal Bioanal Chem 384(3):667–682Google Scholar
  99. Luff BJ, Wilkinson JS, Piehler J, Hollenbach U, Ingenhoff J, Fabricius N (1998) Integrated optical Mach-Zehnder biosensor. J Lightwave Technol 16(4):583–592Google Scholar
  100. Mahar B, Laslau C, Yip R, Sun Y (2007) Development of carbon nanotube-based sensors—a review. IEEE Sens J 7(1–2):266–284Google Scholar
  101. Majumdar A (2002) Bioassays based on molecular nanomechanics. Disease Markers 18(4):167–174Google Scholar
  102. Marazuela MD, Moreno-Bondi MC (2002) Fiber-optic biosensors—an overview. Anal Bioanal Chem 372(5–6):664–682Google Scholar
  103. Marx KA (2003) Quartz crystal microbalance: a useful tool for studying thin polymer films and complex biomolecular systems at the solution-surface interface. Biomacromolecules 4(5):1099–1120Google Scholar
  104. Matsko AB, Ilchenko VS (2006) Optical resonators with whispering-gallery modes—Part I: Basics. IEEE J Sel Top Quantum Electron 12(1):3–14Google Scholar
  105. McBride MT, Masquelier D, Hindson BJ, Makarewicz AJ, Brown S, Burris K, Metz T, Langlois RG, Tsang KW, Bryan R, Anderson DA, Venkateswaran KS, Milanovich FP, Colston BW (2003) Autonomous detection of aerosolized Bacillus anthracis and Yersinia pestis. Anal Chem 75(20):5293–5299Google Scholar
  106. McCaman MT, Murakami P, Pungor E, Hahnenberger KM, Hancock WS (2001) Analysis of recombinant adenoviruses using an integrated microfluidic chip-based system. Anal Biochem 291(2):262–268Google Scholar
  107. McEuen PL, Fuhrer MS, Park HK (2002) Single-walled carbon nanotube electronics. IEEE Trans Nanotechnol 1(1):78–85Google Scholar
  108. McFarland AD, Van Duyne RP (2003) Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett 3(8):1057–1062Google Scholar
  109. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4(6):435–446Google Scholar
  110. Nath N, Chilkoti A (2002) A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface. Anal Chem 74(3):504–509Google Scholar
  111. Nelson BP, Frutos AG, Brockman JM, Corn RM (1999) Near-infrared surface plasmon resonance measurements of ultrathin films. 1. Angle shift and SPR imaging experiments. Anal Chem 71(18):3928–3934Google Scholar
  112. Nelson BP, Grimsrud TE, Liles MR, Goodman RM, Corn RM (2001) Surface plasmon resonance imaging measurements of DNA and RNA hybridization adsorption onto DNA microarrays. Anal Chem 73(1):1–7Google Scholar
  113. Otsuki S, Tamada K, Wakida S (2005) Wavelength-scanning surface plasmon resonance imaging. Appl Opt 44(17):3468–3472Google Scholar
  114. Ouyang H, Striemer CC, Fauchet PM (2006) Quantitative analysis of the sensitivity of porous silicon optical biosensors. Appl Phys Lett 88:163108Google Scholar
  115. Patolsky F, Zheng GF, Hayden O, Lakadamyali M, Zhuang XW, Lieber CM (2004) Electrical detection of single viruses. Proc Natl Acad Sci USA 101(39):14017–14022Google Scholar
  116. Patolsky F, Zheng GF, Lieber CM (2006) Nanowire-based biosensors. Anal Chem 78(13):4260–4269CrossRefGoogle Scholar
  117. Pregibon DC, Toner M, Doyle PS (2007) Multifunctional encoded particles for high-throughput biomolecule analysis. Science 315(5817):1393–1396Google Scholar
  118. Prieto F, Sepulveda B, Calle A, Llobera A, Dominguez C, Abad A, Montoya A, Lechuga LM (2003) An integrated optical interferometric nanodevice based on silicon technology for biosensor applications. Nanotechnology 14(8):907–912Google Scholar
  119. Rabe J, Buttgenbach S, Schroder J, Hauptmann P (2003) Monolithic miniaturized quartz microbalance array and its application to chemical sensor systems for liquids. IEEE Sens J 3(4):361–368Google Scholar
  120. Rao YL, Zhang GG (2006) Enhancing the sensitivity of SAW sensors with nanostructures. Curr Nanosci 2(4):311–318Google Scholar
  121. Rasooly A, Herold KE (2006) Biosensors for the analysis of food- and waterborne pathogens and their toxins. J AOAC Int 89(3):873–883Google Scholar
  122. Riboh JC, Haes AJ, McFarland AD, Yonzon CR, Van Duyne RP (2003) A nanoscale optical biosensor: real-time immunoassay in physiological buffer enabled by improved nanoparticle adhesion. J Phys Chem B 107(8):1772–1780Google Scholar
  123. Rosenblatt S, Yaish Y, Park J, Gore J, Sazonova V, McEuen PL (2002) High performance electrolyte gated carbon nanotube transistors. Nano Lett 2(8):869–872Google Scholar
  124. Ross JS, Schenkein DP, Kashala O, Linette GP, Stec J, Symmans WF, Pusztai L, Hortobagyi GN (2004) Pharmacogenomics. Adv Anat Pathol 11(4):211–220Google Scholar
  125. Rothenhausler B, Knoll W (1988) Surface-plasmon microscopy. Nature 332(6165):615–617Google Scholar
  126. Saleh B, Teich M (1991) Fundamentals of photonics. Wiley, New YorkGoogle Scholar
  127. Sander C (2000) Genomic medicine and the future of health care. Science 287(5460):1977–1978Google Scholar
  128. Schmidt B, Almeida V, Manolatou C, Preble S, Lipson M (2004) Nanocavity in a silicon waveguide for ultrasensitive nanoparticle detection. Appl Phys Lett 85(21):4854–4856Google Scholar
  129. Schofield CL, Field RA, Russell DA (2007) Glyconanoparticles for the colorimetric detection of cholera toxin. Anal Chem 79(4):1356–1361Google Scholar
  130. Seydack M (2005) Nanoparticle labels in immunosensing using optical detection methods. Biosens Bioelectron 20(12):2454–2469Google Scholar
  131. Shim SB, Imboden M, Mohanty P (2007) Synchronized oscillation in coupled nanomechanical oscillators. Science 316(5821):95–99Google Scholar
  132. Shimizu Y, Egashira M (1999) Basic aspects and challenges of semiconductor gas sensors. MRS Bull 24(6):18–24Google Scholar
  133. Shumaker-Parry JS, Campbell CT (2004) Quantitative methods for spatially resolved adsorption/desorption measurements in real time by surface plasmon resonance microscopy. Anal Chem 76(4):907–917Google Scholar
  134. Sidransky D (2002) Emerging molecular markers of cancer. Nat Rev Cancer 2(3):210–219Google Scholar
  135. Sinha N, Ma JZ, Yeow JTW (2006) Carbon nanotube-based sensors. J Nanosci Nanotechnol 6(3):573–590Google Scholar
  136. Skivesen N, Tetu A, Kristensen M, Kjems J, Frandsen LH, Borel PI (2007) Photonic-crystal waveguide biosensor. Opt Express 15(6):3169–3176Google Scholar
  137. Smith PA, Nordquist CD, Jackson TN, Mayer TS, Martin BR, Mbindyo J, Mallouk TE (2000) Electric-field assisted assembly and alignment of metallic nanowires. Appl Phys Lett 77(9):1399–1401Google Scholar
  138. Spangler BD, Wilkinson EA, Murphy JT, Tyler BJ (2001) Comparison of the Spreeta (R) surface plasmon resonance sensor and a quartz crystal microbalance for detection of Escherichia coli heat-labile enterotoxin. Anal Chim Acta 444(1):149–161Google Scholar
  139. Srinivas PR, Kramer BS, Srivastava S (2001) Trends in biomarker research for cancer detection. Lancet Oncol 2(11):698–704Google Scholar
  140. Srinivas PR, Verma M, Zhao YM, Srivastava S (2002) Proteomics for cancer biomarker discovery. Clin Chem 48(8):1160–1169Google Scholar
  141. Stern E, Klemic JF, Routenberg DA, Wyrembak PN, Turner-Evans DB, Hamilton AD, LaVan DA, Fahmy TM, Reed MA (2007) Label-free immunodetection with CMOS-compatible semiconducting nanowires. Nature 445(7127):519–522Google Scholar
  142. Stetzenbach LD, Buttner MP, Cruz P (2004) Detection and enumeration of airborne biocontaminants. Curr Opin Biotechnol 15(3):170–174Google Scholar
  143. Storhoff JJ, Elghanian R, Mucic RC, Mirkin CA, Letsinger RL (1998) One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J Am Chem Soc 120(9):1959–1964Google Scholar
  144. Straub TM, Chandler DP (2003) Towards a unified system for detecting waterborne pathogens. J Microbiol Methods 53(2):185–197Google Scholar
  145. Su XD, Wu YJ, Knoll W (2005) Comparison of surface plasmon resonance spectroscopy and quartz crystal microbalance techniques for studying DNA assembly and hybridization. Biosens Bioelectron 21(5):719–726Google Scholar
  146. Tao NJ, Boussaad S, Huang WL, Arechabaleta RA, D’Agnese J (1999) High resolution surface plasmon resonance spectroscopy. Rev Sci Instrum 70(12):4656–4660Google Scholar
  147. Tetz KA, Pang L, Fainman Y (2006) High-resolution surface plasmon resonance sensor based on linewidth-optimized nanohole array transmittance. Opt Lett 31(10):1528–1530Google Scholar
  148. Unfricht DW, Colpitts SL, Fernandez SM, Lynes MA (2005) Grating-coupled surface plasmon resonance: a cell and protein microarray platform. Proteomics 5(17):4432–4442Google Scholar
  149. Usui-Aoki K, Shimada K, Nagano M, Kawai M, Koga H (2005) A novel approach to protein expression profiling using antibody microarrays combined with surface plasmon resonance technology. Proteomics 5(9):2396–2401Google Scholar
  150. Vollmer F, Braun D, Libchaber A, Khoshsima M, Teraoka I, Arnold S (2002) Protein detection by optical shift of a resonant microcavity. Appl Phys Lett 80(21):4057–4059Google Scholar
  151. Wanekaya AK, Chen W, Myung NV, Mulchandani A (2006) Nanowire-based electrochemical biosensors. Electroanalysis 18(6):533–550Google Scholar
  152. Wang ZL (2003) Nanowires and nanobelts: materials, properties and devices. Kluwer, BostonGoogle Scholar
  153. Wang J (2005) Carbon-nanotube based electrochemical biosensors: a review. Electroanalysis 17(1):7–14Google Scholar
  154. Wang L, Tan WH (2006) Multicolor FRET silica nanoparticles by single wavelength excitation. Nano Lett 6(1):84–88Google Scholar
  155. Wang WU, Chen C, Lin KH, Fang Y, Lieber CM (2005) Label-free detection of small-molecule-protein interactions by using nanowire nanosensors. Proc Natl Acad Sci USA 102(9):3208–3212Google Scholar
  156. Wang XD, Song JH, Wang ZL (2007) Nanowire and nanobelt arrays of zinc oxide from synthesis to properties and to novel devices. J Mater Chem 17(8):711–720Google Scholar
  157. Ward AM, Catto JWF, Hamdy FC (2001) Prostate specific antigen: biology, biochemistry and available commercial assays. Ann Clin Biochem 38:633–651Google Scholar
  158. Wassaf D, Kuang GN, Kopacz K, Wu QL, Nguyen Q, Toews M, Cosic J, Jacques J, Wiltshire S, Lambert J, Pazmany CC, Hogan S, Ladner RC, Nixon AE, Sexton DJ (2006) High-throughput affinity ranking of antibodies using surface plasmon resonance microarrays. Anal Biochem 351(2):241–253Google Scholar
  159. Wu GH, Datar RH, Hansen KM, Thundat T, Cote RJ, Majumdar A (2001) Bioassay of prostate-specific antigen (PSA) using microcantilevers. Nat Biotechnol 19(9):856–860Google Scholar
  160. Wulfkuhle JD, Liotta LA, Petricoin EF (2003) Proteomic applications for the early detection of cancer. Nat Rev Cancer 3(4):267–275Google Scholar
  161. Xia YN, Yang PD, Sun YG, Wu YY, Mayers B, Gates B, Yin YD, Kim F, Yan YQ (2003) One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 15(5):353–389Google Scholar
  162. Xu HX, Sha MY, Wong EY, Uphoff J, Xu YH, Treadway JA, Truong A, O’Brien E, Asquith S, Stubbins M, Spurr NK, Lai EH, Mahoney W (2003) Multiplexed SNP genotyping using the Qbead (TM) system: a quantum dot-encoded microsphere-based assay. Nucleic Acids Res 31:e43Google Scholar
  163. Yang YT, Callegari C, Feng XL, Ekinci KL, Roukes ML (2006) Zeptogram-scale nanomechanical mass sensing. Nano Lett 6(4):583–586Google Scholar
  164. Ymeti A, Greve J, Lambeck PV, Wink T, van Hovell S, Beumer TAM, Wijn RR, Heideman RG, Subramaniam V, Kanger JS (2007) Fast, ultrasensitive virus detection using a young interferometer sensor. Nano Lett 7(2):394–397Google Scholar
  165. Yonzon CR, Jeoungf E, Zou SL, Schatz GC, Mrksich M, Van Duyne RP (2004) A comparative analysis of localized and propagating surface plasmon resonance sensors: the binding of concanavalin a to a monosaccharide functionalized self-assembled monolayer. J Am Chem Soc 126(39):12669–12676Google Scholar
  166. Yu CX, Irudayaraj J (2007) Multiplex biosensor using gold nanorods. Anal Chem 79(2):572–579Google Scholar
  167. Yuk JS, Jung JW, Jung SH, Han JA, Kim YM, Ha KS (2005) Sensitivity of ex situ and in situ spectral surface plasmon resonance sensors in the analysis of protein arrays. Biosens Bioelectron 20(11):2189–2196Google Scholar
  168. Zaytseva NV, Montagna RA, Baeumner AJ (2005) Microfluidic biosensor for the serotype-specific detection of Dengue virus RNA. Anal Chem 77(23):7520–7527Google Scholar
  169. Zhang H, Kim ES (2005) Micromachined acoustic resonant mass sensor. J Microelectromech Syst 14(4):699–706Google Scholar
  170. Zhang CS, Xu JL, Ma WL, Zheng WL (2006a) PCR microfluidic devices for DNA amplification. Biotechnol Adv 24(3):243–284Google Scholar
  171. Zhang J, Lang HP, Huber F, Bietsch A, Grange W, Certa U, McKendry R, Guntgerodt HJ, Hegner M, Gerber C (2006b) Rapid and label-free nanomechanical detection of biomarker transcripts in human RNA. Nat Nanotechnol 1(3):214–220Google Scholar
  172. Zhao J, Zhang XY, Yonzon CR, Haes AJ, Van Duyne RP (2006) Localized surface plasmon resonance biosensors. Nanomedicine 1(2):219–228Google Scholar
  173. Zheng GF, Patolsky F, Cui Y, Wang WU, Lieber CM (2005) Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat Biotechnol 23(10):1294–1301Google Scholar
  174. Zhu HY, White IM, Suter JD, Zourob M, Fan XD (2007) Integrated refractive index optical ring resonator detector for capillary electrophoresis. Anal Chem 79(3):930–937Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • David Erickson
    • 1
  • Sudeep Mandal
    • 2
  • Allen H. J. Yang
    • 3
  • Bernardo Cordovez
    • 1
  1. 1.Sibley School of Mechanical and Aerospace EngineeringCornell UniversityIthacaUSA
  2. 2.Applied and Engineering PhysicsCornell UniversityIthacaUSA
  3. 3.Chemical and Biomolecular EngineeringCornell UniversityIthacaUSA

Personalised recommendations