Microfluidics and Nanofluidics

, Volume 4, Issue 1–2, pp 17–32 | Cite as

Optofluidic waveguides: II. Fabrication and structures

Research Paper

Abstract

We review fabrication methods and common structures for optofluidic waveguides, defined as structures capable of optical confinement and transmission through fluid filled cores. Cited structures include those based on total internal reflection, metallic coatings, and interference based confinement. Configurations include optical fibers and waveguides fabricated on flat substrates (integrated waveguides). Some examples of optofluidic waveguides that are included in this review are Photonic Crystal Fibers (PCFs) and two-dimensional photonic crystal arrays, Bragg fibers and waveguides, and Anti Resonant Reflecting Optical Waveguides (ARROWs). An emphasis is placed on integrated ARROWs fabricated using a thin-film deposition process, which illustrates how optofluidic waveguides can be combined with other microfluidic elements in the creation of lab-on-a-chip devices.

Keywords

Optofluidics Integrated optics Waveguides Photonic crystals Bragg 

Notes

Acknowledgments

We gratefully acknowledge funding for this work by the National Institutes of Health (NIH/NIBIB) under grants R21EB003430 and R01EB006097, the National Science Foundation (NSF) under grant ECS-0528730, NASA/UARC Aligned Research Program (ARP) grant, a California Systemwide Biotechnology Research & Education Program Training Grant (UC-GREAT 2005-245), a National Academies Keck Futures Initiative Award (NAKFI-Nano14), and a grant from the David Huber Foundation.

References

  1. Altkorn R, Koev I, Van Duyne RP, Litorja M (1997a) Low-loss liquid-core optical fiber for low-refractive-index liquids: fabrication, characterization, and application in Raman spectroscopy. Appl Opt 36:8992–8998CrossRefGoogle Scholar
  2. Altkorn R, Koev I, Gottlieb A (1997b) Waveguide capillary cell for low-refractive-index liquids. Appl Spectrosc 51:1554–1558CrossRefGoogle Scholar
  3. Balslev S, Kristensen A (2005) Microfluidic single-mode laser using high-order Bragg grating and antiguiding segments. Opt Exp 13:344–351CrossRefGoogle Scholar
  4. Barber JP, Conkey DB, Lee JR, Hubbard NB, Howell LL, Schmidt H, Hawkins AR (2005) Fabrication of hollow waveguides with sacrificial aluminum cores. IEEE Photonic Tech L 17:363–365CrossRefGoogle Scholar
  5. Barber JP, Lunt EJ, George ZA, Yin D, Schmidt H, Hawkins AR (2006a) Integrated hollow waveguides with arch-shaped cores. IEEE Photonic Tech L 18: 28–30CrossRefGoogle Scholar
  6. Barber JP, Lunt EJ, Yin D, Schmidt H, Hawkins AR (2006b) Monolithic fabrication of hollow ARROW based sensors. Proc SPIE 6110:61100HCrossRefGoogle Scholar
  7. Bernini R, DeNuccio E, Minardo A, Zeni L, Sarro PM (2007) Integrated silicon optical sensors based on hollow core waveguide. Proc SPIE 6477:647714CrossRefGoogle Scholar
  8. Brown M, Vestad T, Oakey J, Marr DWM (2006) Optical waveguides via viscosity-mismatched microfluidic flows. Appl Phys Lett 88:134109CrossRefGoogle Scholar
  9. Campopiano S, Bernini R, Zeni L, Sarro PM (2004) Microfluidic sensor based on integrated optical hollow waveguides. Opt Lett 29:1894–1896CrossRefGoogle Scholar
  10. Chow E, Grot A, Mirkarimi LW, Sigalas M, Girolami G (2004) Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity. Opt Lett 29:1093–1095CrossRefGoogle Scholar
  11. Cox FM, Argyros A, Large MCJ (2006) Liquid-filled hollow core microstructured polymer optical fiber. Opt Express 14:4135–4140CrossRefGoogle Scholar
  12. Craighead H (2006) Future lab-on-a-chip technologies for interrogating individual molecules. Nature 442:387–393CrossRefGoogle Scholar
  13. Dallas T, Dasgupta PK (2004) Light at the end of the tunnel: recent analytical applications of liquid-core waveguides. Trends Anal Chem 23:1–8CrossRefGoogle Scholar
  14. Dasgupta PK, Genfa Z, Poruthoor SK, Caldwell S, Dong S, LiuHigh S (1998) Sensitivity gas sensors based on gas-permeable liquid core waveguides and long-path absorbance detection. Anal Chem 70:4661–4669CrossRefGoogle Scholar
  15. Datta A, Eom I, Dhar A, Kuban P, Manor R, Ahmad I, Gangopadhyay S, Dallas T, Holtz M, Temkin H, Dasgupta P (2003) Microfabrication and characterization of Teflon AF-coated liquid core waveguide channels in silicon. IEEE Sens J 3:788–795CrossRefGoogle Scholar
  16. DeCorby RG, Ponnampalam N, Nguyen HT, Pai MM, Clement TJ (2007) Guided self-assembly of integrated hollow Bragg waveguides. Opt Express 15:3902–3915CrossRefGoogle Scholar
  17. Dell’Olio F, Passaro VMN (2007) Optical sensing by optimized silicon slot waveguides. Opt Express 15:4977–4993CrossRefGoogle Scholar
  18. Dreß P, Franke H (1996) An optical fiber with a liquid H2O core. Proc SPIE 2686:157–163CrossRefGoogle Scholar
  19. Duguay MA, Kokubun Y, Koch T, Pfeiffer L (1986) Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures. Appl Phys Lett 49:13–15CrossRefGoogle Scholar
  20. Edwards JM, Hamblin MN, Fuentes HV, Peeni BA, Lee ML, Woolley AT, Hawkins AR (2007) Thin film electroosmotic pumps for biomicrofluidic applications. Biomicrofluidics 1:014101CrossRefGoogle Scholar
  21. Erickson D, Rockwood T, Emery T, Scherer A, Psaltis D (2006) Nanofluidic tuning of photonic crystal circuits. Opt Lett 31:59–61CrossRefGoogle Scholar
  22. Fink Y, Winn JN, Fan S, Chen C, Michel J, Joannopoulos JD, Thomas EL (1998) A dielectric omnidirectional reflector. Science 282:1679–1682CrossRefGoogle Scholar
  23. Fouckhardt H, Grosse A, Grewe M, Kuhnke M (2001) Micro flow modules with combined fluidflow channel and optical detection waveguide—hyper Rayleigh scattering as a case study. Fresenius J Anal Chem 371:218–227CrossRefGoogle Scholar
  24. Gopal V, Harrington JA (2003) Deposition and characterization of metal sulfide dielectric coatings for hollow glass waveguides. Opt Express 11:3182–3187CrossRefGoogle Scholar
  25. Hawkins AR, Lunt EJ, Holmes M, Phillips B, Yin D, Rudenko MI, Schmidt H (2007) Advances in integrated hollow waveguides for on-chip sensors. Proc SPIE 6462:64620UCrossRefGoogle Scholar
  26. Hecht J (1998) City of light. Oxford University Press, New YorkGoogle Scholar
  27. Hecht J (2002) Understanding fiber optics, 4th edn. Prentice-Hall, Upper Saddle RiverGoogle Scholar
  28. Hubbard NB, Howell LL, Barber JP, Conkey DB, Hawkins AR, Schmidt H (2005) Mechanical models and design rules for on-chip micro-channels with sacrificial cores. J Micromech Microeng 15:720–727CrossRefGoogle Scholar
  29. Jenkins RM, McNie ME, Blockley AF, Price N, McQuillan J (2003) Hollow waveguides for integrated optics. In: Proceedings of European Conference on Optical Communications (ECOC), Rimini, ItalyGoogle Scholar
  30. Jensen JB, Pedersen LH, Hoiby PE, Nielsen LB, Hansen TP, Folkenberg JR, Riishede J, Noordegraaf D, Nielsen K, Carlsen A, Bjarklev A (2004) Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions. Opt Lett 29:1974–1976CrossRefGoogle Scholar
  31. Knight J (2003) Photonic crystal fibres. Nature 424:847–851CrossRefGoogle Scholar
  32. Lee JR, Barber JP, George ZA, Lee ML, Schmidt H, Hawkins AR (2007) Micro-channels with different core shapes fabricated using sacrificial etching. J Micro Nanolith MEMS MOEMS 6:013010CrossRefGoogle Scholar
  33. Liu C (2006) Foundations of MEMS. Pearson Prentice Hall, Upper Saddle RiverGoogle Scholar
  34. Lo S, Wang M, Chen C (2004) Semiconductor hollow optical waveguides formed by omni-directional reflectors. Opt Express 12:6589–6593CrossRefGoogle Scholar
  35. Martelli C, Canning J, Lyytikainen K, Groothoff N (2005) Water-core Fresnel fiber. Opt Express 13:3890–3895CrossRefGoogle Scholar
  36. McDonald JC, Whitesides GM (2002) Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc Chem Res 35:491–499CrossRefGoogle Scholar
  37. Mohebbi M, Fedosejevs R, Gopal V, Harrington JA (2002) Silver-coated hollow-glass waveguide for applications at 800 nm. Appl Opt 41:7031–7035CrossRefGoogle Scholar
  38. Monat C, Domachuk P, Eggleton BJ (2007) Integrated optofluidics: a new river of light. Nat Phot 1:106–114CrossRefGoogle Scholar
  39. Peeni BA, Conkey DB, Barber JP, Kelly R, Lee ML, Woolley AT, Hawkins AR (2005) Planar thin film device for capillary electrophoresis. Lab Chip 5:501–505CrossRefGoogle Scholar
  40. Peeni BA, Lee ML, Hawkins AR, Woolley AT (2006) Sacrificial layer microfluidic device fabrication methods. Electrophoresis 27:4888–4895CrossRefGoogle Scholar
  41. Pone E, Dubois C, Guo N, Gao Y, Dupois A, Boismenu F, Lacroix S, Skorobogatiy M (2006) Drawing of the hollow all-polymer Bragg fibers. Opt Express 14:5838–5852CrossRefGoogle Scholar
  42. Psaltis D, Quake SR, Yang C (2006) Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442:381–386CrossRefGoogle Scholar
  43. Rindorf L, Jensen JB, Dufva M, Pedersen LH, Hoiby PE, Bang O (2006) Photonic crystal fiber long-period gratings for biochemical sensing. Opt Express 14:8224–8231CrossRefGoogle Scholar
  44. Risk WP, Kim H, Miller RD, Temkin H, Gangopadhyay S (2004) Optical waveguides with an aqueous core and a low-index nanoporous cladding. Opt Express 12:6446–6455CrossRefGoogle Scholar
  45. Schelle B, Dreß P, Franke H, Klein KF, Slupek J (1999) Physical characterization of lightguide capillary cells. J Phys D Appl Phys 32:3157–3163CrossRefGoogle Scholar
  46. Schmidt H, Yin D, Yang W, Wu B, Conkey DB, Barber JP, Hawkins AR (2006) Towards integration of quantum interference in alkali atoms on a chip. Proc SPIE 6130:613006CrossRefGoogle Scholar
  47. Skivesen N, Tetu A, Kristensen M, Kjems J, Frandsen LH, Borel PI (2007) Photonic-crystal waveguide biosensor. Opt Express 15:3169–3176CrossRefGoogle Scholar
  48. Stone J (1972) Optical transmission in liquid-core quartz fibers. Appl Phys Lett 20:239–240CrossRefGoogle Scholar
  49. Temelkuran B, Hart SD, Benolt G, Joannopoulos JD, Fink Y (2002) Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission. Nature 420:650–653CrossRefGoogle Scholar
  50. Tsunoda K, Nomura A, Yamada J, Nishi S (1989) The possibility of signal enhancement in liquid absorption spectrometry with a long capillary cell utilizing successive total reflection at the outer cell surface. Appl Spectrosc 43:49–55CrossRefGoogle Scholar
  51. Wang T, Aiken JH, Hule CW, Hartwick RA (1991) Nanoliter-scale multireflection cell for absorption detection in capillary electrophoresis. Anal Chem 63:1372–1375CrossRefGoogle Scholar
  52. Wang S, Huang X, Fang Z, Dasgupta P (2001) A miniaturized liquid core waveguide-capillary electrophoresis system with flow injection sample introduction and fluorometric detection using light-emitting diodes. Anal Chem 73:4545–4549CrossRefGoogle Scholar
  53. Wolfe DB, Conroy RS, Garstecki P, Mayers BT, Fischbach MA, Paul KE, Prentiss M, Whitesides GM (2004) Dynamic control of liquid-core/liquid-cladding optical waveguides. Proc Natl Acad Sci 101:12434–12438CrossRefGoogle Scholar
  54. Wolfe DB, Vezenov DV, Mayers BT, Whitesides GM, Conroy RS, Prentiss MG (2005) Diffusion-controlled optical elements for optofluidics. App Phys Lett 87:181105CrossRefGoogle Scholar
  55. Xu Q, Almeida VR, Panepucci RR, Lipson M (2004) Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material. Opt Lett 29:1626–1628CrossRefGoogle Scholar
  56. Yin D, Barber JP, Hawkins AR, Deamer DW, Schmidt H (2004) Integrated optical waveguides with liquid cores. Appl Phys Lett 85:3477–3479CrossRefGoogle Scholar
  57. Yin D, Barber JP, Lunt EJ, Hawkins AR, Schmidt H (2005a) Optical characterization of arch-shaped ARROW waveguides with liquid cores. Opt Exp 13:10564–10569CrossRefGoogle Scholar
  58. Yin D, Barber JP, Hawkins AR, Schmidt H (2005b) Low-loss integrated optical sensors based on hollow-core ARROW waveguides. Proc SPIE 5730:218–225CrossRefGoogle Scholar
  59. Yin D, Barber JP, Hawkins AR, Schmidt H (2006a) Waveguide loss optimization in hollow-core ARROW waveguides. Opt Express 13:9331–9336CrossRefGoogle Scholar
  60. Yin D, Barber JP, Deamer DW, Hawkins AR, Schmidt H (2006b) Single-molecule detection using planar integrated optics on a chip. Opt Lett 31:2136–2138CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Electrical and Computer Engineering DepartmentBrigham Young UniversityProvoUSA
  2. 2.School of EngineeringUniversity of California-Santa CruzSanta CruzUSA

Personalised recommendations