Microfluidic sorting of droplets by size

  • Yung-Chieh Tan
  • Yao Li Ho
  • Abraham Phillip Lee
Short Communication

Abstract

Droplet sorting by size was achieved in microfluidic channels through controlling the bifurcating junction geometry and the flow rates of the daughter channels. The sorting designs separated droplets with a radius difference of as little as 4 μm. The developed droplet channel design can be potentially used in combination with other particle sorting system to improve the sorting efficiency without the control of electrodes or fluidic valves.

Keywords

Sorting Droplets Size 

References

  1. Anna SL, Bontoux N, Stone HA (2003) Formation of dispersions using “flow-focusing” in microchannels. Appl Phys Lett 82:364–366CrossRefGoogle Scholar
  2. Chabert M, Dorfman KD, Viovy JL (2005) Droplet fusion by alternating current (AC) field electrocoalescence in microchannels. Electrophoresis 26:3706–3715CrossRefGoogle Scholar
  3. Guttenberg Z, Müller H, Habermüller H, Geisbauer A, Pipper J, Felbel J, Kielpinski M, Scriba J, Wixforth A (2004) Planar chip device for PCR and hybridization with surface acoustic wave pump. Lab Chip 5:308–317CrossRefGoogle Scholar
  4. He M, Edgar JS, Jeffries GDM, Lorenz RM, Shelby JP, Chiu DT (2005) Selective encapsulation of single cells and subcellular organelles into picoliter- and femtoliter-volume droplets. Anal Chem 77:1539–1544CrossRefGoogle Scholar
  5. Hung LH, Choi KM, Tseng WY, Tan YC, Shea KJ, Lee AP (2006) Alternating droplet generation and controlled dynamic droplet fusion in microfluidic device for CdS nanoparticles synthesis. Lab Chip 6:174–178CrossRefGoogle Scholar
  6. Kohler JM, Henkel T, Grodrian A, Kirner T, Roth M, Martin K, Metze J (2004) Digital reaction technology by micro segmented flow-components, concepts and applications. Chem Eng J 101:201–216CrossRefGoogle Scholar
  7. Link DR, Anna SL, Weitz DA, Stone HA (2004) Geometrically mediated breakup of drops in microfluidic devices. Phys Rev Lett 92:05403–05404Google Scholar
  8. McDonald JC, Duffy DC (2000) Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21:27–40CrossRefGoogle Scholar
  9. Tan YC, Fisher JS, Lee AI, Cristini V, Lee AP (2004) Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting. Lab Chip 4:292–298CrossRefGoogle Scholar
  10. Tan YC, Cristini V, Lee AP (2006a) Monodispersed microfluidic droplet generation by shear focusing microfluidic device. Sens Actuator B 114:350–356CrossRefGoogle Scholar
  11. Tan YC, Hettiarachchi K, Siu M, Pan YR, Lee AP (2006b) Controlled microfluidic encapsulation of cells, proteins and microbeads in lipid vesicles. JACS 128:5656–5658CrossRefGoogle Scholar
  12. Tan YC, Ho YL, Lee AP (2006c) Droplet coalescence by geometrically mediated flow in microfluidic channels. Microfluidics Nanofluidics 10.1007/s10404–006-0136-1Google Scholar
  13. Thorsen T, Roberts RW, Arnold FH, Quake SR (2001) Dynamic pattern formation in a vesicle-generating microfluidic device. Phys Rev Lett 86:4163–4166CrossRefGoogle Scholar
  14. Zheng B, Roach LS, Ismagilov (2003) RF, screening of protein crystallization conditions on a microfluidic chip using nanoliter-size droplets. J Am Chem Soc 125:11170–11171CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Yung-Chieh Tan
    • 1
  • Yao Li Ho
    • 1
  • Abraham Phillip Lee
    • 1
  1. 1.Department of Biomedical EngineeringUniversity of California IrvineIrvineUSA

Personalised recommendations