Microfluidics and Nanofluidics

, Volume 3, Issue 6, pp 645–652 | Cite as

Combining fluidic reservoirs and optical tweezers to control beads/living cells contacts

  • Serge Monneret
  • Federico Belloni
  • Olivier Soppera
Research Paper


We have developed a complete system based on holographic optical tweezers to realize multiple-point interactions between beads and cells with control of the stimulation places, timing and durations. We introduce microstereolithography as a 3D micromanufacturing approach to the rapid prototyping of three-dimensional fluidic microchambers of complex shapes, comprising wells, channels and walls, that are afterwards placed inside the sample and used to inject beads locally and keep them separated from cells in our assays. A custom reservoir designed to keep beads and cells separated in liquid samples has been realized and successfully tested. This allows us to deposit beads locally on the microscope cover glass placed under the reservoir outlet. Limited dispersion of beads under the outlet has been confirmed, and the ability of the polymeric structures to confine beads in a restricted area has been demonstrated. Examples of manipulations consisting at first in extracting several beads from the reservoir, making them travel to the target cell, and finally depositing on its outer membrane with respect to the shape of the target cell, are finally given.


Optical tweezers Microstereolithography Microfluidics Cell activation 



This work has been supported in part by CARL ZEISS S.A. and the “Conseil Régional de la Région Provence-Alpes-Côte d’Azur”. HOT setup has been supported by the CEE. Microstereolithography has been supported by the CNRS-MRCT.


  1. Andersson H, Van den Berg A (2003) Microfluidics devices for cellomics: a review. Sens Actuators B 92:315–325CrossRefGoogle Scholar
  2. Ashkin A, Dziedzic J, Bjorkholm J, Chu S (1986) Observations of a single-beam gradient force optical trap for dielectric particles. Opt Lett 11:288–290Google Scholar
  3. Belloni F, Monneret S, Marguet D (2006) Interactive space-time controlled application of different stimuli for cells dynamics study. Proc SPIE 6326:OR-1–OR-10Google Scholar
  4. Bertsch A, Bernhard P, Vogt C, Renaud P (2000) Rapid prototyping of small size objects. Rapid Prototyping J 6:259–266CrossRefGoogle Scholar
  5. Bertsch A, Jiguet S, Bernhard P, Renaud P (2003) Microstereolithography: a review. Mater Res Soc Symp Proc 758:LL1–LL12Google Scholar
  6. Dufresne E, Grier DG (1998) Optical tweezer arrays and optical substrates created with diffractive optics. Rev Sci Instrum 69:1974–1977CrossRefGoogle Scholar
  7. Enger J, Goksör M, Ramser K, Hagberg P, Hanstorp D (2004) Optical tweezers applied to a microfluidics system. Lab Chip 4:196–200CrossRefGoogle Scholar
  8. Ferrari E, Emiliani V, Cojoc D, Garbin V, Zahid M, Durieux C, Coppey-Moisan M, Di Fabrizio E (2005) Biological samples micro-manipulation by means of optical tweezers. Microelectronic Eng 78–79:575–581CrossRefGoogle Scholar
  9. Galbraith C, Sheetz M (1999) Keratocytes pull with similar forces on their dorsal and ventral surfaces. J Cell Biol 147:1313–1323CrossRefGoogle Scholar
  10. Gerchberg R, Saxton W (1972) A practical algorithm for the determination of the phase from image and diffraction plane pictures. Optik 35:237–246Google Scholar
  11. Heidemann S, Wirtz D (2004) Towards a regional approach to cell mechanics. Trends Cell Biol 14:160–166CrossRefGoogle Scholar
  12. Ikuta K, Hirowatari K (1993) Real three-dimensional microfabrication using stereolithography and metal molding. Proc IEEE Micro Electro Mech Syst 42–47Google Scholar
  13. Jacobs PF (1992) Rapid prototyping and manufacturing: fondamentals of stereolithography. The Society of Manufacturing Engineers, Dearborn, MIGoogle Scholar
  14. Lesem LB, Hirsch PM, Jordan JA (1969) The kinoform: a new wavefront reconstruction device. IBM J Res Dev 13:150–155CrossRefGoogle Scholar
  15. Liesener J, Reicherter M, Haist T, Tiziani HJ (2000) Multi-functional optical tweezers using computer-generated holograms. Opt Commun 185:77–82CrossRefGoogle Scholar
  16. Mogensen P, Glückstad J (2000) Phase-only optical encryption. Opt Lett 25:566–568CrossRefGoogle Scholar
  17. Monneret S, Loubère V, Corbel S (1999) Microstereolitho-graphy using a dynamic mask generator and a non coherent visible light source. Symposium on Design, Test and Microfabrication of MEMS/MOEMS. Proc SPIE 3680:553–561Google Scholar
  18. Monneret S, Provin C, Le Gall H (2001) Microscale rapid prototyping by stereolithography. In: Proceedings of the 8th IEEE International conference on emerging technologies and factory automation, Proceedings IEEE Piscataway, vol 2. NJ, USA, pp 299–304Google Scholar
  19. Monneret S, Belloni F, Marguet D (2006) Practical lab tool for living cells based on microstereolithography and multiple dynamic holographic optical tweezers. Proc SPIE 6088:273–285Google Scholar
  20. Neuman K, Block S (2004) Optical trapping. Rev Sci Instrum 75:2787–2809CrossRefGoogle Scholar
  21. Ozkan M, Wang M, Ozkan C, Flynn R, Birkbeck A, Esener S (2003) Optical manipulation of objects and biological cells in microfluidic devices. Biomed Microdevices 5:61–67CrossRefGoogle Scholar
  22. Provin C, Monneret S, Le Gall H, Rigneault H, Lenne P-F, Giovannini H (2001) New process for manufacturing ceramic microfluidic devices for microreactor and bioanalytical applications. In: Microreaction Technology: Proceedings of the 5th International conference on microreaction technology, Springer, Berlin, pp 103–112Google Scholar
  23. Provin C, Monneret S, Le Gall H, Corbel S (2003) Three-dimensional ceramic microcomponents made using microstereolithography. Adv Mater 15:994–997CrossRefGoogle Scholar
  24. Raucher D, Sheetz M (1999) Characteristics of a membrane reservoir buffering membrane tension. Biophys J 77:1992–2002CrossRefGoogle Scholar
  25. Raucher D, Sheetz M (2000) Cell spreading and lamellipodial extension rate is regulated by membrane tension. J Cell Biol 148:127–136CrossRefGoogle Scholar
  26. Reicherter M, Haist T, Wagemann E, Tiziani H (1999) Optical particle trapping with computer-generated holograms written on a liquid-crystal dysplay. Opt Lett 24:608–610Google Scholar
  27. Tse L, Hesketh P, Rosen D, Gole J (2003) Stereolithography on silicon for microfluidics and microsensor packaging. Microsyst Technol 9:319–323CrossRefGoogle Scholar
  28. Umehara S, Wakamoto Y, Inoue I, Yasuda K (2003) On-chip single-cell microcultivation assay for monitoring environmental effects on isolated cells. Biochem Biophys Res Commun 305:534–540CrossRefGoogle Scholar
  29. Wakamoto Y, Umehara S, Matsumura K, Inoue I, Yasuda K (2003) Development of non-destructive, non-contact single-cell based differential cell assay using on-chip microcultivation and optical tweezers. Sens Actuators B 96:693–700CrossRefGoogle Scholar
  30. Ziaie B, Baldi A, Lei M, Gu Y, Siegel R (2004) Hard and soft micromachining for BioMEMS: review of techniques and examples of applications in microfluidics and drug delivery. Adv Drug Deliv Rev 56:145–172CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Serge Monneret
    • 1
  • Federico Belloni
    • 1
    • 2
  • Olivier Soppera
    • 3
  1. 1.Mosaic group, Institut FresnelCNRS - Université Paul CézanneMarseilleFrance
  2. 2.Centre d’Immunologie de Marseille LuminyCNRS - INSERM - Université de la MéditerranéeMarseilleFrance
  3. 3.Département de Photochimie GénéraleCNRS - ENSC MulhouseMulhouseFrance

Personalised recommendations