Microfluidics and Nanofluidics

, Volume 3, Issue 6, pp 635–644

Electrostatic force calculation for an EWOD-actuated droplet

Research Paper

Abstract

This paper examines the electrostatic force on a microdroplet transported via electrowetting on dielectric (EWOD). In contrast with previous publications, this article details the force distribution on the advancing and receding fluid faces, in addition to presenting simple algebraic formulae for the net force in terms of system parameters. Dependence of the force distribution and its integral on system geometry, droplet location, and material properties is described. The consequences of these theoretically and numerically obtained results for design and fabrication of EWOD devices are considered.

Keywords

Electrowetting on dielectric (EWOD) Digital microfluidics Contact angle saturation 

References

  1. Bahadur V, Garimella S (2006) An energy-based model for electrowetting-induced droplet actuation. J Micromech Microeng 11(8):1494–1503Google Scholar
  2. Baird E, Mohseni K (2005) Surface tension actuation of droplets in microchannels. IMECE 2005-79371, 2005 ASME international mechanical engineering congress and R&D expo, OrlandoGoogle Scholar
  3. Beni G, Hackwood S, Jackel J (1982) Continuous electrowetting effect. Appl Phys Lett 40(10):912–914CrossRefGoogle Scholar
  4. Buehrle J, Herminghaus S, Mugele F (2003) Interface profiles near three-phase contact lines in electric fields. Phys Rev Lett 91(086101):1–4Google Scholar
  5. Chen J, Troian S, Darhuber A, Wagner S (2005) Effect of contact angle hysteresis on thermocapillary droplet actuation. J Appl Phys 97(014906):1–9Google Scholar
  6. Cho S, Fan S, Moon H, Kim C (2002) Towards digital microfluidic circuits: creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation. In: Technical digest. MEMS, proceedings of 15th IEEE international conference, pp 32–35Google Scholar
  7. Cho S, Moon H, Kim C (2003) Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. J MEMS 12(1):70–80Google Scholar
  8. Cooney C, Chen C-Y, Emerling M, Nadim A, Sterling J (2006) Electrowetting droplet microfluidics on a single planar surface. Microfluid Nanofluid (Online first)Google Scholar
  9. Darhuber A, Valentino J, Troian S, Wagner S (2003) Microfluidic actuation by modulation of surface stresses. Appl Phys Lett 82:657CrossRefGoogle Scholar
  10. Dolatabadi A, Mohseni K, Arzpeyma A (2006) Behaviour of a moving droplet under electrowetting actuation: numerical simulation. Can J Chem Eng 84(1):17–21Google Scholar
  11. Fair R, Srinivasan V, Ren H, Paik P, Pollack M (2003) Electrowetting-based on-chip sample processing for integrated microfluidics. In: IEEE international electron devices meeting (IEDM)Google Scholar
  12. Griffiths D (1972) Introduction to electrodynamics. Prentice-Hall, Englewood CliffsGoogle Scholar
  13. Jackson J (1998) Classical electrodynamics. Wiley, New YorkGoogle Scholar
  14. Jones T (2002) On the relationship of dielectrophoresis and electrowetting. Langmuir 18:4437–4443CrossRefGoogle Scholar
  15. Jones T (2005) An electromechanical interpretation of electrowetting. J Micromech Microeng 15:1184–1187CrossRefGoogle Scholar
  16. Kang K (2002) How electrostatic fields change contact angle in electrowetting. Langmuir 18(26):10318–10322CrossRefGoogle Scholar
  17. Kang K, Kang I, Lee C (2003) Wetting tension due to coulombic interaction in charge-related wetting phenomena. Langmuir 19(13):5407–5412CrossRefMathSciNetGoogle Scholar
  18. Landau L, Lifshitz E, Pitaevskii L (1984) Electrodynamics of continuous media, vol 8, 2nd edn. Pergamon, New YorkGoogle Scholar
  19. Lee J, Moon H, Fowler J, Schoellhammer T, Kim C (2002) Electrowetting and electrowetting-on-dielectric for microscale liquid handling. Sens Actuators Phys A 95:259–268CrossRefGoogle Scholar
  20. Mohseni K, Baird E, Zhao H (2005) Digitized heat transfer for thermal management of compact microsystems. IMECE 2005-79372, 2005 ASME international mechanical engineering congress and R&D expo, OrlandoGoogle Scholar
  21. Moon H, Cho S, Garrell R, Kim C (2002) Low voltage electrowetting-on-dielectric. J Appl Phys 92(7):4080–4087CrossRefGoogle Scholar
  22. Mugele F, Baret JC (2005) Electrowetting: from basics to applications. J Phys Condens Matter 17(28):R705–R774CrossRefGoogle Scholar
  23. Oleg S, Alexander N (2004) Thermocapillary flows under an inclined temperature gradient. J Fluid Mech 504:99–132MATHCrossRefMathSciNetGoogle Scholar
  24. Papathanasiou A, Boudouvis A (2005) Manifestation of the connection between dielectric breakdown strength and contact angle saturation in electrowetting. Appl Phys Lett 86(16)Google Scholar
  25. Pollack M (2001) Electrowetting-based microactuation of droplets for digital microfluidics. PhD thesis, Duke UniversityGoogle Scholar
  26. Pollack M, Shenderov A, Fair R (2002) Electrowetting-based actuation of droplets for integrated microfluidics. Lab Chip 2(2):96–101CrossRefGoogle Scholar
  27. Saeki F, Baum J, Moon H, Yoon J, Kim C (2001) Electrowetting on dielectrics: reducing voltage requirements for microfluidics. Abstr pap Am Chem Soc, 222(8-PMSE part 2)Google Scholar
  28. Shapiro B, Moon H, Garrell R, Kim C (2003) Equilibrium behavior of sessile drops under surface tension, applied external fields, and material variations. J Appl Phys 93(9):5794–5811CrossRefGoogle Scholar
  29. Vallet M, Vallade M, Berge B (1999) Limiting phenomena for the spreading of water on polymer films by electrowetting. Eur Phys J B 11(4):583–591CrossRefGoogle Scholar
  30. Wang K, Jones T (2005) Electrowetting dynamics of microfluidic actuation. Langmuir 21:4211–4217CrossRefGoogle Scholar
  31. Wheeler A, Moon H, Kim C, Loo J, Garrell R (2004) Electrowetting-based microfluidics for analysis of peptides and proteins by matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem 76:4833–4838CrossRefGoogle Scholar
  32. Wheeler A, Moon H, Bird C, Loo R, Kim C, Loo J, Garrell R (2005) Digital microfluidics with in-line sample purification for proteomics analyses with maldi-ms. Anal Chem 77:534–540CrossRefGoogle Scholar
  33. Woodson H, Melcher J (1968a) Electromechanical dynamics. Part I. Discrete systems. Wiley, New YorkGoogle Scholar
  34. Woodson H, Melcher J (1968b) Electromechanical dynamics. Part II. Fields, forces, and motion. Wiley, New YorkGoogle Scholar
  35. Woodson H, Melcher J (1968c) Electromechanical dynamics. Part III. Elastic and fluid media. Wiley, New YorkGoogle Scholar
  36. Zeng J (2006) Modeling and simulation of electrified droplets and its application to computer-aided design of digital microfluidics. IEEE Trans Comput Aided Des Integr Circuits Syst 5(2):224–233CrossRefGoogle Scholar
  37. Zeng J, Korsmeyer T (2004) Principles of droplet electrohydrodynamics for lab-on-a-chip. Lab Chip 4:265–277CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.University of Colorado at BoulderBoulderUSA

Personalised recommendations