Microfluidics and Nanofluidics

, Volume 3, Issue 1, pp 65–75 | Cite as

Centrifugal generation and manipulation of droplet emulsions

  • Stefan Haeberle
  • Roland Zengerle
  • Jens Ducrée
Research Paper


This work for the first time describes a centrifugal technique for the production and manipulation of highly monodisperse water droplets (CV of droplet diameter below 2%) immersed in a continuous flow of immiscible oil. Within a given working range, droplet volumes (5–22 nL) and their mutual spacing is governed by the channel geometry and the frequency of rotation. Different regimes of liquid–liquid flows are presented. We also demonstrate capabilities like droplet splitting and sedimentation as well as the production of two colored droplets, thus setting the stage for a novel centrifugal platform for multiphase flows.


Capillary Number Droplet Generation Artificial Gravity Water Plug Pressure Drive Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are grateful to the partial support by the German “Landesstiftung Baden-Württemberg gGmbH”.


  1. Anna SL, Bontoux N, Stone HA (2003) Formation of dispersions using “flow focusing” in microchannels. Appl Phys Lett 82(3):364–366CrossRefGoogle Scholar
  2. Brenner T, Glatzel T, Zengerle R, Ducrée J (2005) Frequency-dependent transversal flow control in centrifugal microfluidics. Lab Chip 5(2):146–150CrossRefGoogle Scholar
  3. Cramer C, Fischer P, Windhab EJ (2004) Drop formation in a co-flowing ambient fluid. Chem Eng Sci 59(15):3045–3058CrossRefGoogle Scholar
  4. Dendukuri D, Tsoi K, Hatton TA, Doyle PS (2005) Controlled synthesis of nonspherical microparticles using microfluidics. Langmuir 21(6):2113–2116CrossRefGoogle Scholar
  5. Ducrée J, Schlosser HP, Haeberle S, Glatzel T, Brenner T, Zengerle R (2004) Centrifugal platform for high-throughput reactive micromixing. In: Laurell T, Nilsson J, Jensen KF, Harrison DJ, Kutter JP (eds) Proceedings of μTAS 2004, 8th International Conference on Miniaturized Systems for Chemistry and Life Sciences, September 26–30, Malmö, Sweden, pp 554–556Google Scholar
  6. Ducrée J, Haeberle S, Brenner T, Glatzel T, Zengerle R (2005) Patterning of flow and mixing in rotating radial microchannels. Microfluid Nanofluid 2(2):97–105CrossRefGoogle Scholar
  7. Ducrée J, Brenner T, Haeberle S, Glatzel T, Zengerle R (2006) Multilamination of flows in planar networks of rotating microchannels. Microfluid Nanofluid 2(1):78–84CrossRefGoogle Scholar
  8. Ganan-Calvo AM, Gordillo JM (2001) Perfectly monodisperse microbubbling by capillary flow focusing. Phys Rev Lett 87(27):274501Google Scholar
  9. Garstecki P, Gitlin I, DiLuzio W, Whitesides GM, Kumacheva E, Stone HA (2004) Formation of monodisperse bubbles in a microfluidic flow-focusing device. Appl Phys Lett 85(13):2649–2651CrossRefGoogle Scholar
  10. Garstecki P, Stone HA, Whitesides GM (2005) Mechanism for flow-rate controlled breakup in confined geometries: a route to monodisperse emulsions. Phys Rev Lett 94(16):164501Google Scholar
  11. Geschke O, Klank H, Telleman P (2004) Microsystem engineering of lab-on-a-chip devices. Wiley, WeinheimGoogle Scholar
  12. Grumann M, Brenner T, Beer C, Zengerle R, Ducrée J (2005) Visualization of flow patterning in high-speed centrifugal microfluidics. Rev Sci Instrum 76(2):025101Google Scholar
  13. Gunther A, Jhunjhunwala M, Thalmann M, Schmidt MA, Jensen KF (2005) Micromixing of miscible liquids in segmented gas–liquid flow. Langmuir 21(4):1547–1555CrossRefGoogle Scholar
  14. Haeberle S, Brenner T, Schlosser HP, Zengerle R, Ducrée J (2005a) Centrifugal micromixer. Chem Eng Technol 28(5):613–616CrossRefGoogle Scholar
  15. Haeberle S, Zengerle R, Ducrée J (2005b) Online process control for centrifugal microfluidics. In: Proceedings of Transducers 05, the 13th International Conference on Solid-State Sensors, Actuators and Microsystems, June 5–9, Seoul, Korea, pp 1525–1528Google Scholar
  16. Haeberle S, Schlosser HP, Zengerle R, Ducrée J (2005c) A centrifuge-based microreactor. In: IMRET 8, 8th International Conference on Microreaction Technology, April 10–14, Atlanta, USA, p TK-129fGoogle Scholar
  17. Haeberle S, Zengerle R, Ducrée J (2005d) Monodisperse droplet trains and segmented flow for centrifugal microfluidics. In: Proceedings 9th International Conference on Miniaturized Systems for Chemistry and Life Sciences (μTAS 2005), Boston, USA, pp 635–637Google Scholar
  18. Haeberle S, Schmitt N, Zengerle R, Ducrée J (2006) A centrifugo-magnetically actuated gas micropump. In: Proceedings of 19th International Conference on Microelectro Mechanical Systems (MEMS 2006), Istanbul, Turkey, pp 166–169Google Scholar
  19. Hessel V, Lowe H, Stange T (2002) Microchemical processing at IMM—from pioneering work to customer-specific services. Lab Chip 2(1):14N–21NCrossRefGoogle Scholar
  20. Joanicot M, Ajdari A (2005) Droplet control for microfluidics. Science 309(5736):887–888CrossRefGoogle Scholar
  21. Kim DS, Kwon TH (2006) Modeling, analysis and design of centrifugal force-driven transient filling flow into a circular microchannel. Microfluid Nanofluid 2(2):125–140CrossRefGoogle Scholar
  22. Link DR, Anna SL, Weitz DA, Stone HA (2004) Geometrically mediated breakup of drops in microfluidic devices. Phys Rev Lett 92(5):054503Google Scholar
  23. Lord Rayleigh FRS (1878) On the instability of jets. Proc Lond Math Soc 10(4):4–13Google Scholar
  24. Nisisako T, Torii T, Higuchi T (2004a) Novel microreactors for functional polymer beads. Chem Eng J 101(1–3):23–29CrossRefGoogle Scholar
  25. Nisisako T, Torii T, Higuchi T (2004b) Controlled production of functional polymeric microspheres using multi-phase microfluidics. In: Laurell T, Nilsson J, Jensen KF, Harrison DJ, Kutter JP (eds) Proceedings of μTAS 2004, 8th International Conference on Miniaturized Systems for Chemistry and Life Sciences, September 26–30, Malmö, Sweden, pp 408–410Google Scholar
  26. Roach LS, Song H, Ismagilov RF (2005) Controlling nonspecific protein adsorption in a plug-based microfluidic system by controlling interfacial chemistry using fluorous-phase surfactants. Anal Chem 77(3):785–796CrossRefGoogle Scholar
  27. Shestopalov IA, Tice JD, Ismagilov RF (2004) Multi-step chemical reactions performed on millisecond time scale in a microfluidic droplet-based system. Lab Chip 4:316–321CrossRefGoogle Scholar
  28. Song H, Bringer MR, Tice JD, Gerdts CJ, Ismagilov RF (2003) Experimental test of scaling of mixing by chaotic advection in droplets moving through microfluidic channels. Appl Phys Lett 83(22):4664–4666CrossRefGoogle Scholar
  29. Sugiura S, Nakajima M, Iwamoto S, Seki M (2001) Interfacial tension driven monodispersed droplet formation from microfabricated channel array. Langmuir 17(18):5562–5566CrossRefGoogle Scholar
  30. Tan YC, Fisher JS, Lee AI, Cristini V, Lee AP (2004) Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting. Lab Chip 4(4):292–298CrossRefGoogle Scholar
  31. Thorsen T, Roberts RW, Arnold FH, Quake SR (2001) Dynamic pattern formation in a vesicle-generating microfluidic device. Phys Rev Lett 86(18):4163–4166CrossRefGoogle Scholar
  32. Utada AS, Lorenceau E, Link DR, Kaplan PD, Stone HA, Weitz DA (2005) Monodisperse double emulsions generated from a microcapillary device. Science 308(5721):537–541CrossRefGoogle Scholar
  33. Windhab EJ, Dressler M, Feigl K, Fischer P, Megias-Alguacil D (2005) Emulsion processing—from single-drop deformation to design of complex processes and products. Chem Eng Sci 60(8–9):2101–2113CrossRefGoogle Scholar
  34. Zheng B, Roach LS, Ismagilov RF (2003) Screening of protein crystallization conditions on a microfluidic chip using nanoliter-size droplets. J Am Chem Soc 125(37):11170–11171CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Stefan Haeberle
    • 1
  • Roland Zengerle
    • 1
    • 2
  • Jens Ducrée
    • 1
    • 2
  1. 1.Laboratory for MEMS Applications, Department of Microsystems Engineering (IMTEK) University of FreiburgFreiburgGermany
  2. 2.HSG-IMIT—Institute for Micromachining and Information TechnologyVillingen-SchwenningenGermany

Personalised recommendations