Advertisement

Microfluidics and Nanofluidics

, Volume 2, Issue 1, pp 78–84 | Cite as

Multilamination of flows in planar networks of rotating microchannels

  • Jens Ducrée
  • Thilo Brenner
  • Stefan Haeberle
  • Thomas Glatzel
  • Roland Zengerle
Research Paper

Abstract

We describe a new multilamination technique to accelerated mixing of centrifugally pumped flows through a simple network of preferentially radial, low-aspect-ratio microchannels. Mixing by multilamination is enforced by planar split-and-recombine structures, consisting of a common inlet for two concurrent centrifugal flows, and a transient region of parallel microchannels which merge again into one common outlet. A repatterning of flow is observed in each parallel channel which is induced by the Coriolis pseudo force. In a distinct regime of the parameter space spanned by the speed of rotation, the channel geometry as the viscosity (and density) of the liquids, a multilamination of flow is achieved at the entrance of the common outlet channel. We also present parallelization and cascading strategies to further enhance the homogeneity and throughput of mixing by multilamination.

Keywords

Coriolis Force Parallel Channel Parabolic Velocity Profile Centrifugal Flow Consecutive Quarter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors are grateful to the support by the federal state of Baden–Württemberg for the grant “Bio-Disk” (No. 24-720.431-1-7/2) (Bio-Disk 2003) and the support of the CoMix project (CoMix – Coriolis Microreactor 2004) by the Landesstiftung Baden–Württemberg.

References

  1. Burtis CA, Mailen CJ, Johnson WF, Scott CD, Tiffany TO, Anderson NG (1972) Development of miniature fast analyzer. Clin Chem 18(8):753–761PubMedGoogle Scholar
  2. Schembri CT, Ostoich V, Lingane PJ, Burd TL, Buhl SN (1992) Portable simultaneous multiple analyte whole-blood analyzer for point-of-care testing. Clin Chem 38(9):1665–1670PubMedGoogle Scholar
  3. Madou MJ, Kellogg GJ (1998) LabCD: a centrifuge-based microfluidic platform for diagnostics. In: Cohn GE (ed) Proceedings of SPIE—Systems & Technologies for Clin. Diagn. & Drug Disc, volume 3259, pp 80–93Google Scholar
  4. Duffy DC, Gillis HL, Lin J, Sheppard NF, Kellogg GJ (1999) Microfabricated centrifugal microfluidic systems: characterization and multiple enzymatic assays. Anal Chem 71(20):4669–4678CrossRefGoogle Scholar
  5. Ekstrand G, Holmquist C, Örlefors AE, Hellman B, Larsson A, Andersson P (2000) Microfluidics in a rotating CD. In: van den Berg A, Olthuis W, Bergveld P (eds) Proceedings of the micro total analysis systems symposium (μTAS 2000) May 14–18, Enschede, The Netherlands. Kluwer, The Netherlands, pp 311–314Google Scholar
  6. Zeng J, Banerjee D, Deshpande M, Gilbert JR (2000) Design analyses of capillary burst valves in centrifugal microfluidics. In: van den Berg A, Olthuis W, Bergveld P (eds) Proceedings of the micro total analysis systems symposium (μTAS 2000) May 14–18, Enschede, The Netherlands. Kluwer, pp 493–496Google Scholar
  7. Zeng J, Deshpande M, Greiner K, Gilbert JR (2000) Fluidic capacitance model of capillary-driven stop valves. In: ASME international mechanical engineering congress and exposition (IMECE’00)Google Scholar
  8. Inganäs M, Ekstrand G, Engström J, Eckersten A, Dérand H, Andersson P (2001) Quantitative bio-affinity assays at nanoliter scale, parallel analysis of crude protein mixtures. In: Ramsey JM, van den Berg A (eds) Proceedings of the micro total analysis systems symposium (μTAS 2001), October 21–25, Monterey, pp 91–92Google Scholar
  9. Thorsén G, Ekstrand G, Selditz U, Wallenborg SR, Andersson P (2003) Integrated microfluidics for parallel processing of proteins in a CD microlaboratory. In: Northrup MA, Jensen KF, Harrison DJ (eds) Proceedings of the 7th international conference on micro total analysis systems (μTAS 2003), October 5–9, Squaw Valley, volume 1 of MESA Monographs, Kluwer, pp 457–460Google Scholar
  10. Ducrée J, Brenner T, Glatzel T, Zengerle R (2003) A Coriolis-based split-and-recombine laminator for ultrafast mixing on rotating disks. In: Northrup MA, Jensen KF, Harrison DJ (eds) Proceedings of the 7th international conference on micro total analysis systems (μTAS 2003), October 5–9, Squaw Valley, volume 1 of MESA Monographs, Kluwer, pp 603–606Google Scholar
  11. Gustafsson M, Hirschberg D, Palmberg C, Jörnvall H, Bergman T (2004) Integrated sample preparation and MALDI mass spectrometry on a microfluidic compact disk. Anal Chem 76(2):345–350CrossRefPubMedGoogle Scholar
  12. Kim J, Jang SH, Jia G, Zoval JV, da Silva NA, Madou MJ (2004) Cell lysis on a microfluidic CD (compact disc). Lab Chip 4(5):516–522CrossRefPubMedGoogle Scholar
  13. Puckett LG, Dikici E, Lai S, Madou M, Bachas LG, Daunert S (2004) Investigation into the applicability of the centrifugal microfluidics platform for the development of protein-ligand binding assays incorporating enhanced green fluorescent protein as a fluorescent reporter. Anal Chem 76(24):7263–7268CrossRefPubMedGoogle Scholar
  14. McNeely MR, Spute MK, Tusneem NA, Oliphant AR (1999) Hydrophobic microfluidics. In: Ahn CH, Frazier AB (eds) Proceedings of SPIE—microfluidic devices and systems II, volume 3877, pp 210–220Google Scholar
  15. Atencia J, Beebe DJ (2003) An oscillating ferromagnetic micropump utilizing centrifugal force. In: Northrup MA, Jensen KF, Harrison DJ (eds) Proceedings of the 7th international conference on micro total analysis systems (μTAS 2003), October 5–9, Squaw Valley, pp 883–886Google Scholar
  16. Ryu KS, Shaikh K, Goluch E, Fan Z, Liu C (2004) Micro magnetic stir-bar mixer integrated with parylene microfluidic channels. Lab Chip 4(6):608–613CrossRefPubMedGoogle Scholar
  17. Grumann M, Geipel A, Riegger L, Zengerle R, Ducrée J (2004) Magneto-hydrodynamic micromixing for centrifugal lab-on-a-disk platforms. In: Laurell T, Nilsson J, Jensen KF, Harrison DJ, Kutter JP (eds) Proceedings of the 8th international conference on micro total analysis systems (μTAS 2004), September 26–30, Malmö, Sweden, volume 1, RSC, pp 593–595Google Scholar
  18. Grumann M, Geipel A, Riegger L, Zengerle R, Ducrée J (2005) Batch-mode mixing with magnetic beads on centrifugal microfluidic platforms. Lab Chip 5(5):560–565CrossRefPubMedGoogle Scholar
  19. Stroock AD, Dertinger SK, Adjari A, Mezic I, Stone HA, Whitesides GM (2002) Chaotic mixer for microchannels. Science 295(5555):647–651CrossRefGoogle Scholar
  20. Lim D, Kamotani Y, Cho B, Mazumder J, Takayama S (2003) Fabrication of microfluidic mixers and artificial vasculatures using a high-brightness diode-pumped Nd:YAG laser direct write method. Lab Chip 3(4):318–323CrossRefPubMedGoogle Scholar
  21. Wang H, Iovenitti P, Harvey E, Masood S (2003) Numerical investigation of mixing in microchannels with patterned grooves. J Micromech Microeng 13(6):801–808CrossRefGoogle Scholar
  22. Kim DS, Lee SW, Kwon TH, Lee SS (2004) A barrier embedded chaotic micromixer. J Micromech Microeng 14(6):798–805CrossRefGoogle Scholar
  23. Knight JB, Vishwanath A, Brody JP, Austin RH (1998) Hydrodynamic focusing on a silicon chip: mixing nanoliters in microseconds. Phys Rev Lett 80(17):3863–3866CrossRefGoogle Scholar
  24. Gelfgat AY, Yarin AL, Bar-Yoseph PZ (2003) Dean vortices-induced enhancement of mass transfer through an interface separating two immiscible liquids. Phys Fluid 15(2):330–347CrossRefMathSciNetGoogle Scholar
  25. Howell PB Jr, Mott DR, Golden JP, Ligler FS (2004) Design and evaluation of a Dean vortex-based micromixer. J Micromech Microeng 4(6):663–669Google Scholar
  26. Liu RH, Stremler MA, Sharp KV, Olsen MG, Santiago JG, Adrian RJ, Aref H, Beebe DJ (2000) Passive mixing in a three-dimensional serpentine microchannel. J Microelectromech Sys 9(2):190–197CrossRefGoogle Scholar
  27. Beebe DJ, Adrian RJ, Olsen MG, Stremler MA, Aref H, Jo B-H (2001) Passive mixing in microchannels: fabrication and flow experiments. Méch Ind 2(4):343–348CrossRefGoogle Scholar
  28. Mengeaud V, Josserand J, Girault HH (2002) Mixing processes in a zigzag microchannel: finite element simulations and optical study. Anal Chem 74(16):4279–4286CrossRefPubMedGoogle Scholar
  29. Therriault D, White SR, Lewis JA (2003) Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly. Nat Mater 2:265–271CrossRefPubMedGoogle Scholar
  30. Jen C-P, Wu C-Y, Lin Y-C, Wub C-Y (2003) Design and simulation of the micromixer with chaotic advection in twisted microchannels. Lab Chip 3(2):77–81CrossRefPubMedGoogle Scholar
  31. Chen H, Meiners J-C (2004) Topologic mixing on a microfluidic chip. Appl Phys Lett 84(12):2193–2195CrossRefGoogle Scholar
  32. Mingqiang Yi, Haim HB (2004) The kinematics of bend-induced mixing in micro-conduits. Int J Heat Fluid Flow 24(5):645–656Google Scholar
  33. Park S-J, Kim JK, Park J, Chung S, Chung C, Chang JK (2004) Rapid three-dimensional passive rotation micromixer using the breakup process. J Micromech Microeng 14(1):6–14CrossRefGoogle Scholar
  34. Miyake R, Lammerink TSJ, Elwenspoek M, Fluitman JHJ (1993) Micro mixer with fast diffusion. In: Proceedings of IEEE micro electro mechanical systems (MEMS’93), February 7–10, Fort Lauderdale, Florida, pp 248–253Google Scholar
  35. Elwenspoek M, Lammerink TSJ, Miyake R, Fluitman JHJ (1994) Towards integrated microliquid handling systems. J Micromech Microeng 4(4):227–245CrossRefGoogle Scholar
  36. Miyake R, Tsuzuki K, Takagi T, Imai K (1997) A highly sensitive and small flow-type chemical analysis system with integrated absorptiometric micro-flowcell. In: Proceedings of the 10th IEEE annual international workshop on micro electro mechanical systems (MEMS’97), January 26–30, Nagoya, Japan, pp 102–107Google Scholar
  37. Wang H, Iovenitti P, Harvey E, Masood S (2002) Optimizing layout of obstacles for enhanced mixing in microchannels. Smart Mater Struct 11(5):662–667CrossRefGoogle Scholar
  38. Branebjerg J, Gravesen P, Krog JP (1996) Fast mixing by lamination. In: Proceedings of the 9th IEEE annual international workshop on micro electro mechanical systems (MEMS’96), February 11–15, San Diego, pp 441–446Google Scholar
  39. Schwesinger N, Frank T, Wurmus H (1996) A modular microfluid system with an integrated micromixer. J Micromech Microeng 6(1):99–102CrossRefGoogle Scholar
  40. Gray BL, Jaeggi D, Mourlas NJ, van Drieenhuizen BP, Williams KR, Maluf NI, Kovacs GTA (1999) Novel interconnection technologies for integrated microfluidic systems. Sensor Actuat A—Phys 77(1):57–65CrossRefGoogle Scholar
  41. Hessel V, Hardt S, Löwe H, Schönfeld F (2003) Laminar mixing in different interdigital micromixers: I. experimental characterization. AIChE J 49(3):566–577CrossRefGoogle Scholar
  42. Hessel V, Hardt S, Löwe H (2004) Chemical micro process engineering: fundamentals, modelling and reactions. Wiley, New YorkGoogle Scholar
  43. Hardt S, Schönfeld F (2003) Laminar mixing in different interdigital micromixers: II. numerical simulations. AIChE J 49(3):578–584CrossRefGoogle Scholar
  44. Munson MS, Yager P (2004) Simple quantitative optical method for monitoring the extent of mixing applied to a novel microfluidic mixer. Anal Chim Acta 507(1):63–71CrossRefGoogle Scholar
  45. Nguyen N-T, Wu Z (2005) Micromixers—a review. J Micromech Microeng 15(2):R1–R16CrossRefGoogle Scholar
  46. Hardt S, Drese KS, Hessel V, Schönfeld F (2005) Passive micromixers for applications in the microreactor and μtas fields. Microfluidic NanofluidicGoogle Scholar
  47. Brenner T, Zengerle R, Ducrée J (2003) A flow-switch based on Coriolis force. In: Northrup MA, Jensen KF, Harrison DJ (eds) Proceedings of the 7th international conference on micro total analysis systems (μTAS 2003), October 5–9, Squaw Valley, volume 2 of MESA Monographs, Kluwer, pp 903–906Google Scholar
  48. Ducrée J, Schlosser P, Glatzel T, Zengerle R (2004) Centrifugal platform for high-throughput reactive micromixing. In: Laurell T, Nilsson J, Jensen KF, Harrison DJ, Kutter JP (eds) Proceedings of the 8th international conference on micro total analysis systems (μTAS 2004), September 26–30, Malmö, Sweden, volume 1, RSC, pp 554–556Google Scholar
  49. Alfredsson PH, Persson H (1989) Instabilities in channel flow with system rotation. J Fluid Mech 202:543–557CrossRefGoogle Scholar
  50. Barua SN (1954) Secondary flow in a rotating straight pipe. Proc Roy Soc A 227:133–139zbMATHCrossRefMathSciNetGoogle Scholar
  51. Benton GS (1956) The effect of the earth’s rotation on laminar flow in pipes. J Appl Mech 23:123–127zbMATHGoogle Scholar
  52. Brouwers JJH (1995) Secondary flow and particle centrifugation in slightly tilted rotating pipes. Appl Sci Res—Now Flow Turbu Combust 55:95–105zbMATHGoogle Scholar
  53. Brouwers JJH (2002) Phase separation in centrifugal fields with emphasis on the rotational separator. Int J Exp Heat Trans Thermodynam Fluid Mech 26:325–334Google Scholar
  54. Ducrée J, Haeberle S, Brenner T, Glatzel T, Zengerle R (2005) Patterning of flow and mixing in rotating radial microchannels. Microfluidic Nanofluidic, 2005, status: accepted on 2005-05-05Google Scholar
  55. Brenner T, Glatzel T, Zengerle R, Ducrée J (2005) Frequency-dependent transversal flow control in centrifugal microfluidics. Lab Chip 5(2):146–150CrossRefPubMedGoogle Scholar
  56. Grumann M, Brenner T, Beer C, Zengerle R, Ducrée J (2005) Visualization of flow patterning in high-speed centrifugal microfluidics. Rev Sci Instru 76(2):025101CrossRefGoogle Scholar
  57. Haeberle S, Brenner T, Schlosser H-P, Zengerle R, Ducrée J (2005) Centrifugal micromixer. Chem Eng Technol 28(5):613–616CrossRefGoogle Scholar
  58. Grumann M, Dobmeier M, Schippers P, Brenner T, Kuhn C, Fritsche M, Zengerle R, Ducrée J (2004) Aggregation of bead-monolayers in flat microfluidic chambers—simulation by the model of porous media. Lab Chip 4(3):209–213CrossRefPubMedGoogle Scholar
  59. Grumann M, Riegger L, Nann T, Ehlert O, Mittenbühler K, Urban G, Pastewka L, Brenner T, Zengerle R, Ducrée J (2005) Parallelization of chip-based fluorescence immunoassays with quantum-dot labelled beads. In: Proceedings of the 13th international conference on solid-state sensors, actuators and microsystems (Transducers’05), June 5–9, Seoul, Korea, volume 2, pp 1114–1117Google Scholar
  60. Grumann M, Moser I, Kohn C, Urban G, Riegger L, Steigert J, Zengerle R, Ducrée J (2005) Optical beam guidance in monolithic polymer chips for miniaturized colorimetric assays. In: Proceedings of the 18th IEEE international conference on micro electro mechanical systems (MEMS’05), January 30–February 3, Miami, pp 108–111Google Scholar
  61. Bio-Disk project (2003) http://www.bio-disk.com, June 2003
  62. CoMix—Coriolis Microreactor project (2004) http://www.coriolis-microreactor.com, December 2004

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Jens Ducrée
    • 1
  • Thilo Brenner
    • 2
  • Stefan Haeberle
    • 2
  • Thomas Glatzel
    • 2
  • Roland Zengerle
    • 1
    • 2
  1. 1.HSG-IMITVillingen–SchwenningenGermany
  2. 2.Laboratory for MEMS ApplicationsIMTEK, University of FreiburgFreiburgGermany

Personalised recommendations