Advertisement

Microfluidics and Nanofluidics

, Volume 2, Issue 2, pp 97–105 | Cite as

Patterning of flow and mixing in rotating radial microchannels

  • Jens Ducrée
  • Stefan Haeberle
  • Thilo Brenner
  • Thomas Glatzel
  • Roland Zengerle
Research Paper

Abstract

We demonstrate how the speed of mixing under laminar conditions can be appreciably enhanced in concurrent centrifugal flows through straight, low-aspect-ratio microchannels pointing in radial direction in the plane of rotation. The convective mixing is driven by the inhomogeneous distribution of the velocity-dependent Coriolis pseudo force and the interaction of the so-induced transverse currents with the side walls. By investigating the key impact parameters, which are the geometry of the channels and the speed of rotation, it is shown that the contact surface between two laminar flows can be folded to shorten mixing times by up to two orders of magnitude!

Keywords

Coriolis Force Angular Velocity Vector Rotate Reference Frame Artificial Gravity Liquid Plug 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors are grateful to the support by the federal state of Baden–Württemberg for the grant “Bio-Disk" (grant number 24-720.431-1-7/2) (Bio-Disk project – and June 2003).

References

  1. Alfredsson PH, Persson H (1989) Instabilities in channel flow with system rotation. J Fluid Mech 202:543–557CrossRefGoogle Scholar
  2. Barua SN (1954) Secondary flow in a rotating straight pipe. Proc R Soc A 227:133–139zbMATHCrossRefMathSciNetGoogle Scholar
  3. Benton GS (1956) The effect of the earth’s rotation on laminar flow in pipes. J Appl Mech 23:123–127zbMATHGoogle Scholar
  4. Bio-Disk project (2003) http://www.bio-disk.com
  5. Branebjerg J, Gravesen P, Krog JP (1996) Fast mixing by lamination. In: Proceedings of the 9th IEEE Annual International Workshop on Micro Electro Mechanical Systems (MEMS’96), February 11–15. San Diego, CA, USA, pp 441–446Google Scholar
  6. Brenner T, Haeberle S, Zengerle R, Ducrée J (2004) Continuous centrifugal separation of whole blood on a disk. In: Laurell T, Nilsson J, Jensen KF, Harrison DJ, Kutter JP (eds) Proceedings of the 8th International Conference on Micro Total Analysis Systems (μTAS 2004), vol 1. RSC, Malmö, 26–30 September, pp 566–568Google Scholar
  7. Brenner T, Glatzel T, Zengerle R, Ducrée J (2005) Frequency-dependent transversal flow control in centrifugal microfluidics. Lab Chip 5(2):146–150CrossRefGoogle Scholar
  8. Brouwers JJH (1995) Secondary flow and particle centrifugation in slightly tilted rotating pipes. Appl Sci Res – Now Flow, Turbulence & Combustion 55:95–105zbMATHGoogle Scholar
  9. Brouwers JJH (2002) Phase separation in centrifugal fields with emphasis on the rotational separator. Int J Exp Heat Transfer Thermodyn Fluid Mech 26:325–334Google Scholar
  10. Ducrée J, Koltay P, Zengerle R (2005) Microfluidics. In: Korvink JG, Paul O (eds) MEMS—a practical guide to design, analysis, and applications. William Andrew Publishing/Noyes Publications, Norwich, NYGoogle Scholar
  11. Duffy DC, Gillis HL, Lin J, Sheppard NF, Kellogg GJ (1999) Microfabricated centrifugal microfluidic systems: characterization and multiple enzymatic assays. Anal Chem 71(20):4669–4678CrossRefGoogle Scholar
  12. Eckersten A, Edman Örlefors A, Ellström C, Erickson K, Löfman E, Eriksson A, Eriksson S, Jorsback A, Tooke N, Derand H, Ekstrand G, Engström J, Honerud AK, Aksberg A, Hedsten H, Rosengren L, Stjernström M, Hultman T, Andersson P (2001) High-throughput SNP scoring in a disposable microfabricated CD device. Technical report, Gyros Microlabs, Uppsala, Sweden and Amersham Pharmacia Biotech, Uppsala, SwedenGoogle Scholar
  13. Ekstrand G, Holmquist C, Edman Örlefors A, Hellman B, Larsson A, Andersson P (2000) Microfluidics in a rotating CD. In: van den Berg A, Olthuis W, Bergveld P (eds) Proceedings of the Micro Total Analysis Systems Symposium (μTAS 2000) May 14–18, Kluwer, Enschede, pp 311–314Google Scholar
  14. ESI Group (2000) – CFD–ACE+ – http://www.esi-group.com/SimulationSoftware/CFD_ACE/
  15. Gravesen P, Branebjerg J, Jensen OS (1993) Microfluidics—a review. J Micromech Microeng 3(4):168–182CrossRefGoogle Scholar
  16. Grumann M, Geipel A, Riegger L, Zengerle R, Ducrée J (2004) Magneto-hydrodynamic micromixing for centrifugal lab-on-a-disk platforms. In: Laurell T, Nilsson J, Jensen KF, Harrison DJ, Kutter JP (eds) Proceedings of the 8th international conference on micro total analysis systems (μTAS 2004), vol 1. RSC, Malmö, 26–30 September, pp 593–595Google Scholar
  17. Grumann M, Brenner T, Beer C, Zengerle R, Ducrée J (2005) Visualization of flow patterning in high-speed centrifugal microfluidics. Rev Sci Instrum 76(2):025101CrossRefGoogle Scholar
  18. Haeberle S, Brenner T, Schlosser H-P, Zengerle R, Ducrée J (2005) Centrifugal micromixer. Chem Eng Technol 28(5):613–616CrossRefGoogle Scholar
  19. Hardt S, Schönfeld F (2003) Laminar mixing in different interdigital micromixers: II. Numerical simulations. AIChE J 49(3):578–58CrossRefGoogle Scholar
  20. Hardt S, Drese KS, Hessel V, Schönfeld F (2005) Passive micromixers for applications in the microreactor and μtas fields. Microfluid NanofluidGoogle Scholar
  21. Henzler HJ (2000) Ullmann’s Encyclopedia of Industrial Chemistry, chapter continuous mixing of fluids. Wiley-VCH, BerlinGoogle Scholar
  22. Hessel V, Hardt S, Löwe H, Schönfeld F (2003) Laminar mixing in different interdigital micromixers: I. Experimental characterization. AIChE J 49(3):566–577CrossRefGoogle Scholar
  23. Hessel V, Löwe H, Schönfeld F (2005) Micromixers—a review on passive and active mixing principles. Chem Eng Sci 60(8-9):2479–2501CrossRefGoogle Scholar
  24. Ho CM (2001) Fluidics – The link between micro and nano sciences and technologies. In: Proceedings of the 14th IEEE International Conference on Micro Electro Mechanica Systems (MEMS’01), January 21–25, Interlaken, International Switzerland, pp 375–384Google Scholar
  25. Madou MJ, Kellogg GJ (1998) LabCD: a centrifuge-based microfluidic platform for diagnostics. In: Cohn GE (ed) Proceedings of SPIE—Systems & Technologies for Clin. Diagn. & Drug Disc. vol 3259, pp 80–93Google Scholar
  26. Man PF, Mastrangelo CH, Burns MA, Burke DT (1998) Microfabricated capillarity-driven stop valve and sample injector. In: Proceedings of the 11th IEEE Annual International Workshop on Micro Electro Mechanical Systems (MEMS’98), January 25–29, Heidelberg, Germany, pp 45–50Google Scholar
  27. McNeely MR, Spute MK, Tusneem NA, Oliphant AR (1999) Hydrophobic microfluidics. In: Ahn CH, Frazier AB (eds) Proceedings of SPIE – microfluidic devices & systems II vol 3877, pp 210–220Google Scholar
  28. Nguyen N-T, Steve Wereley (2002) Fundamentals and applications of microfluidics. Artech House Microelectromechanical Systems LibraryGoogle Scholar
  29. Nguyen N-T, Wu Z (2005) Micromixers—a review. J Micromech Microeng 15(2):R1–R16CrossRefGoogle Scholar
  30. Palm A, Wallenborg SR, Gustafsson M, Hedström A, Togan-Tekin E, Andersson P (2001) Integrated sample preparation and MALDI MS on a disc. In: Ramsey JM, van den Berg A (eds) Proceedings of the Micro Total Analysis Systems Symposium (μTAS 2001), Kluwer, CA, USA, 21–25 October, pp 216–218Google Scholar
  31. Tay FEH (ed) (2002) Microfluidics and BioMEMS applications. Microsystems. Kluwer, DordrechtGoogle Scholar
  32. Taylor GI (1953) Dispersion of soluble mater in solvent flowing slowly through a tube. Proc Royal Soc A 219:186–203CrossRefGoogle Scholar
  33. Tooke NE, Eckersten A, Edman Örlefors A, Ellström C, Erickson K, Löfman E, Eriksson A, Eriksson S, Jorsback A, Derand H, Ekstrand G, Engström J, Honerud AK, Aksberg A, Hedsten H, Rosengren L, Stjernström M, Andersson P, Hultman T (2001) High-throughput SNP scoring in a disposable micro-fabricated CD device combined with solid-phase pyrosequencing. Technical report, Gyros Microlabs, Uppsala, Sweden and Amersham Pharmacia Biotech, Uppsala, SwedenGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Jens Ducrée
    • 1
  • Stefan Haeberle
    • 1
  • Thilo Brenner
    • 1
  • Thomas Glatzel
    • 1
  • Roland Zengerle
    • 1
  1. 1.IMTEK – Institute of Microsystem TechnologyUniversity of FreiburgFreiburgGermany

Personalised recommendations