Microfluidics and Nanofluidics

, Volume 2, Issue 1, pp 21–36

The microscopy cell (MicCell), a versatile modular flowthrough system for cell biology, biomaterial research, and nanotechnology

  • F. -U. Gast
  • P. S. Dittrich
  • P. Schwille
  • M. Weigel
  • M. Mertig
  • J. Opitz
  • U. Queitsch
  • S. Diez
  • B. Lincoln
  • F. Wottawah
  • S. Schinkinger
  • J. Guck
  • J. Käs
  • J. Smolinski
  • K. Salchert
  • C. Werner
  • C. Duschl
  • M. S. Jäger
  • K. Uhlig
  • P. Geggier
  • S. Howitz
Research Paper

Abstract

We describe a novel microfluidic perfusion system for high-resolution microscopes. Its modular design allows pre-coating of the coverslip surface with reagents, biomolecules, or cells. A poly(dimethylsiloxane) (PDMS) layer is cast in a special molding station, using masters made by photolithography and dry etching of silicon or by photoresist patterning on glass or silicon. This channel system can be reused while the coverslip is exchanged between experiments. As normal fluidic connectors are used, the link to external, computer-programmable syringe pumps is standardized and various fluidic channel networks can be used in the same setup. The system can house hydrogel microvalves and microelectrodes close to the imaging area to control the influx of reaction partners. We present a range of applications, including single-molecule analysis by fluorescence correlation spectroscopy (FCS), manipulation of single molecules for nanostructuring by hydrodynamic flow fields or the action of motor proteins, generation of concentration gradients, trapping and stretching of live cells using optical fibers precisely mounted in the PDMS layer, and the integration of microelectrodes for actuation and sensing.

Keywords

Lab-on-chip PDMS microchannel Microscopy Hydrogel valve Microelectrodes 

Abbreviations

AC/DC

Alternating current/direct current

AMPPNP

Adenosine 5′-(β,γ-imido)triphosphate

ASE

Advanced silicon etching

ATP

Adenosine 5′-triphosphate

cDNA

Complementary (or copy) DNA

DNA

Deoxyribonucleic acid

ECM

Extracellular matrix

FCS

Fluorescence correlation spectroscopy

FITC

Fluoresceine isothiocyanate

FN

Fibronectin

FRET

Fluorescence resonance energy transfer

GFP

Green fluorescent protein

Hz

Hertz (s−1)

kbp

Kilobase pairs

μTAS

Micro total analysis system

nDEP

Negative dielectrophoresis

nM

Nanomol/liter

nN

Nanonewton

OD

Outer diameter

PCB

Printed circuit board

PDMS

Poly(dimethylsiloxane)

PMMA

Poly(methylmethacrylate)

PNIPAAm

Poly(N-isoproypyl acrylamide)

POMA

Poly(octadecene-alt-maleic anhydride)

PTFE

Poly(tetrafluoroethylene)

RNA

Ribonucleic acid

TIRF

Total internal reflection fluorescence

UNF

Universal National Fine Thread

References

  1. Allemand JF, Bensimon D, Jullien L, Bensimon A, Croquette V (1997) pH-dependent specific binding and combing of DNA. Biophys J 73:2064–2070PubMedGoogle Scholar
  2. Alon R, Feigelson S (2002) From rolling to arrest on blood vessels: leukocyte tap dancing on endothelial integrin ligands and chemokines at sub-second contacts. Semin Immunol 14:93–104CrossRefPubMedGoogle Scholar
  3. Andersson H, van den Berg A (2003) Microfluidic devices for cellomics: a review. Sens Actuators B Chem 92:315–325CrossRefGoogle Scholar
  4. Böhm KJ, Stracke R, Baum M, Zieren M, Unger E (2000) Effect of temperature on kinesin-driven microtubule gliding and kinesin ATPase activity. FEBS Lett 466:59–62CrossRefPubMedGoogle Scholar
  5. Braun E, Eichen Y, Sivan U, Ben-Yoseph G (1998) DNA-templated assembly and electrode attachment of a conducting silver wire. Nature 391:775–778CrossRefPubMedGoogle Scholar
  6. Brunner C, Ernst KH, Hess H, Vogel V (2004) Lifetime of biomolecules in polymer-based hybrid nanodevices. Nanotechnology 15:S540–S548CrossRefGoogle Scholar
  7. Cesaro-Tadic S, Dernick G, Juncker D, Buurman G, Kropshofer H, Michel B, Fattinger C, Delamarche E (2004) High-sensitivity immunoassays for tumor necrosis factor α using microfluidic systems. Lab Chip 4:563–569CrossRefPubMedGoogle Scholar
  8. Dertinger SKW, Chiu DT, Li Jeon N, Whitesides GM (2001) Generation of gradients having complex shapes using microfluidic networks. Anal Chem 73:1240–1246CrossRefGoogle Scholar
  9. Dertinger SKW, Jiang X, Li Z, Murthy VN, Whitesides GM (2002) Gradients of substrate-bound laminin orient axonal specification of neurons. Proc Natl Acad Sci USA 99:12542–12547CrossRefPubMedGoogle Scholar
  10. Diez S, Reuther C, Dinu C, Seidel R, Mertig M, Pompe W, Howard J (2003) Stretching and transporting DNA molecules using motor proteins. Nano Lett 3:1251–1254CrossRefGoogle Scholar
  11. Dittrich PS, Schwille P (2003) An integrated microfluidic system for reaction, high-sensitivity detection, and sorting of fluorescent cells and particles. Anal Chem 75:5767–5774CrossRefPubMedGoogle Scholar
  12. Dittrich PS, Müller B, Schwille P (2004) Studying reaction kinetics by simultaneous FRET and cross-correlation analysis in a miniaturized continuous flow reactor. Phys Chem Chem Phys 6:4416–4420CrossRefGoogle Scholar
  13. Dittrich PS, Jahnz M, Schwille P (2005) A new embedded process for compartmentalized cell-free protein expression and on-line detection in microfluidic devices. ChemBioChem 6:811–814CrossRefPubMedGoogle Scholar
  14. Duschl C, Geggier P, Jäger M, Stelzle M, Müller T, Schnelle T, Fuhr G (2004) Versatile chip-based tools for the controlled manipulation of microparticles in biology using high frequency electromagnetic fields. In: Andersson H, van den Berg A (eds) Lab-on-chips for cellomics: micro and nanotechnologies for life science. Springer, Berlin Heidelberg New YorkGoogle Scholar
  15. Eigen M, Rigler R (1994) Sorting single molecules: application to diagnostics and evolutionary biotechnology. Proc Natl Acad Sci USA 91:5740–5747PubMedCrossRefGoogle Scholar
  16. Elson EL (1988) Cellular mechanics as an indicator of cytoskeletal structure and function. Annu Rev Biophys Biophys Chem 17:397–430CrossRefPubMedGoogle Scholar
  17. Fiedler S, Hagedorn R, Schnelle T, Richter E, Wagner B, Fuhr G (1995) Diffusional electrotitration: generation of pH gradients over arrays of ultramicroelectrodes detected by fluorescence. Anal Chem 67:820–828CrossRefGoogle Scholar
  18. Fu AY, Spence C, Scherer A, Arnold FH, Quake SR (1999) A microfabricated fluorescence-activated cell sorter. Nat Biotechnol 17:1109–1111CrossRefPubMedGoogle Scholar
  19. Georgiou G (2001) Analysis of large libraries of protein mutants using flow cytometry. Adv Protein Chem 55:293–315CrossRefGoogle Scholar
  20. Grier DG (2003) A revolution in optical manipulation. Nature 424:810–816CrossRefPubMedGoogle Scholar
  21. Guck J, Ananthakrishnan R, Moon TJ, Cunningham CC, Käs J (2000) Optical deformability of soft biological dielectrics. Phys Rev Lett 84:5451–5454CrossRefPubMedGoogle Scholar
  22. Guck J, Ananthakrishnan R, Mahmood H, Moon TJ, Cunningham CC, Käs J (2001) The optical stretcher: a novel laser tool to micromanipulate cells. Biophys J 81:767–784PubMedGoogle Scholar
  23. Guck J, Schinkinger S, Lincoln B, Wottawah F, Ebert S, Romeyke M, Lenz D, Erickson HM, Ananthakrishnan R, Mitchell D, Käs J, Ulvick S, Bilby C (2005) Optical deformability as inherent cell marker for testing malignant transformation and metastatic competence. Biophys J 88:3689–3698CrossRefPubMedGoogle Scholar
  24. Hess H, Clemmens J, Qin D, Howard J, Vogel V (2001) Light-controlled molecular shuttles made from motor proteins carrying cargo on engineered surfaces. Nano Lett 1:235–239CrossRefGoogle Scholar
  25. Hess H, Howard J, Vogel V (2002a) A piconewton forcemeter assembled from microtubules and kinesins. Nano Lett 2:1113–1115CrossRefGoogle Scholar
  26. Hess H, Clemmens J, Howard J, Vogel V (2002b) Surface imaging by self-propelled nanoscale probes. Nano Lett 2:113–116CrossRefGoogle Scholar
  27. Howard J (2001) Mechanics of motor proteins and the cytoskeleton. Sinauer Associates, SunderlandGoogle Scholar
  28. Huang H, Kamm RD, Lee RT (2004) Cell mechanics and mechanotransduction: pathways, probes, and physiology. Am J Physiol Cell Physiol 287:C1–C11CrossRefPubMedGoogle Scholar
  29. Knoblauch M, Peters WS (2004) Forisomes, a novel type of Ca2+-dependent contractile protein motor. Cell Motil Cytoskeleton 58:137–142CrossRefPubMedGoogle Scholar
  30. Knoblauch M, Noll GA, Müller T, Prüfer D, Schneider-Hüther I, Scharner D, van Bel JE, Peters WS (2003) ATP-independent contractile proteins from plants. Nat Mater 2:600–603CrossRefPubMedGoogle Scholar
  31. Kobayashi J, Mori Y, Okamoto K, Akiyama R, Ueno M, Kitamori T, Kobayashi S (2004) A microfluidic device for conducting gas-liquid-solid hydrogenation reactions. Science 304:1305–1308CrossRefPubMedGoogle Scholar
  32. Lärmer F, Schilp A (1994) Method of anisotropically etching silicon. US Patent No. 5501893, German Patent DE4241045Google Scholar
  33. Larson RG, Perkins TT, Smith DE, Chu S (1997) Hydrodynamics of a DNA molecule in a flow field. Phys Rev E 55:1794–1797CrossRefGoogle Scholar
  34. Li Jeon N, Dertinger SKW, Chiu DT, Choi IS, Stroock AD, Whitesides GM (2000) Generation of solution and surface gradients using microfluidic systems. Langmuir 16:8311–8316CrossRefGoogle Scholar
  35. Lincoln B, Erickson HM, Schinkinger S, Wottawah F, Mitchell D, Ulvick S, Bilby C, Guck J (2004) Deformability-based flow cytometry. Cytometry 59A:203–209CrossRefPubMedGoogle Scholar
  36. Lipman EA, Schuler B, Bakajin O, Eaton WA (2003) Single-molecule measurement of protein folding kinetics. Science 301:1233–1235CrossRefPubMedGoogle Scholar
  37. Madge D, Elson E, Webb WW (1972) Thermodynamic fluctuations in a reacting system—measurement by fluorescence correlation spectroscopy. Phys Rev Lett 29:705–708CrossRefGoogle Scholar
  38. Manz A, Graber N, Widmer HM (1990) Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sens Actuators B Chem 1:244–248CrossRefGoogle Scholar
  39. Manz A, Fettinger JC, Verpoorte E, Lüdi H, Widmer HM, Harrison DJ (1991) Micromachining of monocrystralline silicon and glass for chemical analysis systems: a look into next century’s technology or just a fashionable craze? Trends Anal Chem 10:144–149CrossRefGoogle Scholar
  40. Maubach G, Csáki A, Seidel R, Mertig M, Pompe W, Born D, Fritzsche W (2003) Controlled positioning of a DNA molecule in an electrode setup based on self-assembly and microstructuring. Nanotechnology 14:1055–1056CrossRefGoogle Scholar
  41. Mertig M, Pompe W (2004) Biomimetic fabrication of DNA-based metallic nanowires and networks. In: Niemeyer CM, Mirkin CA (eds) Nanobiotechnology: concepts, applications and perspectives. Wiley-VCH, Weinheim, pp 256–277Google Scholar
  42. Mertig M, Colombi Ciacchi L, Seidel R, Pompe W, De Vita A (2002) DNA as a selective metallization template. Nano Lett 2:841–844CrossRefGoogle Scholar
  43. Müller T, Gradl G, Howitz S, Shirley S, Schnelle T, Fuhr G (1999) A 3-D microelectrode system for handling and caging single cells and particles. Biosens Bioelectron 14:247–256CrossRefGoogle Scholar
  44. Pompe T, Zschoche S, Herold N, Salchert K, Gouzy MF, Sperling C, Werner C (2003) Maleic anhydride copolymers—a versatile platform for molecular biosurface engineering. Biomacromolecules 4:1072–1079CrossRefPubMedGoogle Scholar
  45. Prots I, Stracke R, Unger E, Böhm KJ (2003) Isopolar microtubule arrays as a tool to determine motor protein directionality. Cell Biol Int 27:251–253CrossRefPubMedGoogle Scholar
  46. Richter J, Mertig M, Pompe W, Mönch I, Schackert HK (2001) Construction of highly conductive nanowires on a DNA template. Appl Phys Lett 78:536–538CrossRefGoogle Scholar
  47. Richter A, Kuckling D, Howitz S, Gehring T, Arndt KF (2003) Electronically controlled microvalves based on smart hydrogels: magnitudes and potential applications. J Microelectromech Syst 12:748–753CrossRefGoogle Scholar
  48. Richter A, Howitz S, Kuckling D, Arndt KF (2004) Influence of volume phase transition phenomena on the behavior of hydrogel-based valves. Sens Actuators B Chem 99:451–458CrossRefGoogle Scholar
  49. Ruardy TG, Schakenraad JM, van der Mei HC, Busscher HJ (1997) Preparation and characterization of chemical gradient surfaces and their application for the study of cellular interaction phenomena. Surf Sci Rep 29:3–30CrossRefGoogle Scholar
  50. Schinkinger S, Wottawah F, Travis KA, Lincoln B, Guck J (2004) Feeling for cells with light. Proc SPIE Optical Trapping Optical Micromanipulation 5514:170–178Google Scholar
  51. Schnapp BJ, Crise B, Sheetz MP, Reese TS, Khan S (1990) Delayed start-up of kinesin-driven microtubule gliding following inhibition by adenosine 5′-[β,γ-imido]triphosphate. Proc Natl Acad Sci USA 87:10053–10057PubMedCrossRefGoogle Scholar
  52. Scholey JM (1993) Motility assays for motor proteins (Methods in cell biology, vol 39). Academic Press, San DiegoGoogle Scholar
  53. Seeman NC (1996) The design and engineering of nucleic acid nanoscale assemblies. Curr Opin Struct Biol 6:519–526CrossRefPubMedGoogle Scholar
  54. Stracke P, Böhm KJ, Burgold J, Schacht HJ, Unger E (2000) Physical and technical parameters determining the functioning of a kinesin-based cell-free motor system. Nanotechnology 11:52–56CrossRefGoogle Scholar
  55. Van Vliet KJ, Bao G, Suresh S (2003) The biomechanics toolbox: experimental approaches for living cells and biomolecules. Acta Materialia 51:5881–5905CrossRefGoogle Scholar
  56. Wirtz D (1995) Direct measurement of the transport properties of a single DNA molecule. Phys Rev Lett 75:2436–2439CrossRefPubMedGoogle Scholar
  57. Wottawah F, Schinkinger S, Lincoln B, Ananthakrishnan R, Romeyke M, Guck J, Käs J (2005) Optical rheology of biological cells. Phys Rev Lett 94:098103CrossRefPubMedGoogle Scholar
  58. Yan H, Park SH, Finkelstein G, Reif JH, LaBean T (2003) DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science 301:1882–1884CrossRefPubMedGoogle Scholar
  59. Zimmermann RM, Cox EC (1994) DNA stretching on functionalized gold surfaces. Nucleic Acids Res 22:492–497PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • F. -U. Gast
    • 1
  • P. S. Dittrich
    • 2
  • P. Schwille
    • 3
  • M. Weigel
    • 4
  • M. Mertig
    • 4
  • J. Opitz
    • 4
  • U. Queitsch
    • 5
  • S. Diez
    • 5
  • B. Lincoln
    • 6
  • F. Wottawah
    • 6
  • S. Schinkinger
    • 6
  • J. Guck
    • 6
  • J. Käs
    • 6
  • J. Smolinski
    • 7
  • K. Salchert
    • 7
  • C. Werner
    • 7
  • C. Duschl
    • 8
  • M. S. Jäger
    • 8
  • K. Uhlig
    • 8
  • P. Geggier
    • 8
  • S. Howitz
    • 1
  1. 1.GeSiM mbHGrosserkmannsdorfGermany
  2. 2.Department MiniaturizationInstitute for Analytical SciencesDortmundGermany
  3. 3.Institute for Biophysics/BioTecTU DresdenDresdenGermany
  4. 4.Max Bergmann Center of Biomaterials and Institute of Materials ScienceTU DresdenDresdenGermany
  5. 5.Group Optical Technology Development and BionanotechnologyMax Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
  6. 6.Institute for Soft Matter Physics, Department of Physics and GeosciencesUniversity of LeipzigLeipzigGermany
  7. 7.Department of Biocompatible MaterialsLeibniz Institute of Polymer Research and Max Bergmann Center of Biomaterials DresdenDresdenGermany
  8. 8.Fraunhofer Institute for Biomedical Engineering (Fh-IBMT)BerlinGermany

Personalised recommendations