Microfluidics and Nanofluidics

, Volume 1, Issue 3, pp 249–267

Nanofluidics: what is it and what can we expect from it?

Review
  • 3.8k Downloads

Abstract

Starting from the background of nanofluidics in other disciplines, this paper describes the present state of research in this field and discusses possible directions of development. Emphasis is put on the very diverse background of nanofluidics in biology, chemistry, physics and engineering and the valuable knowledge available in these disciplines. First, the forces that play a role on the nanoscale are discussed and then a summary is given of some different theoretical treatments. Subsequently, an overview is given of the different phenomena occurring on the nanoscale and their present applications. Finally, some possible future applications are discussed.

References

  1. Adleman LM (1994) Molecular computation of solutions of combinatorial problems. Science 266(11):1021–1024PubMedGoogle Scholar
  2. Adjari A, Brochard-Wyart F, de Gennes P-G, Leibler L, Viovy J-L, Rubinstein M (1994) Slippage of an entangled polymer melt on a grafted surface. Physica A 204:17–39Google Scholar
  3. Ajdari A, Prost J (1992) Drift induced by a spatially periodic potential of low symmetry: pulsed dielectrophoresis. C R Acad Sci Ser II 315:1635–1639Google Scholar
  4. Ajdari A, Mukamel D, Peliti L, Prost J (1994) Rectified motion induced by AC forces in periodic structures. J Phys I (France) 4:1551–1561CrossRefGoogle Scholar
  5. Alexander S (1977) Adsorption of chain molecules with a polar head: a scaling description. J Phys (France) 38:983–987Google Scholar
  6. Arvanitidou E, Hoagland D (1991) Chain-length dependence of the electrophoretic mobility in random gels. Phys Rev Lett 67(11):1464–1466CrossRefPubMedGoogle Scholar
  7. Astumian RD, Bier M (1994) Fluctuation driven ratchets: molecular motors. Phys Rev Lett 72(11):1766–1769CrossRefPubMedGoogle Scholar
  8. Auroux PA, Iossifidis D, Reyes DR, Manz A (2002) Micro total analysis systems. Part II: analytical standard operations and applications. Anal Chem 74(12):2637–2652CrossRefPubMedGoogle Scholar
  9. Bader JS, Deem MW, Hammond RW, Henck SA, Simpson JW, Rothberg JM (2002) A Brownian-ratchet DNA pump with applications to single-nucleotide polymorphism genotyping. Appl Phys A 75:275–278CrossRefGoogle Scholar
  10. Bakajin OB, Duke TAJ, Chou CF, Chan SS, Austin RH, Cox EC (1998) Electrohydrodynamic stretching of DNA in confined environments. Phys Rev Lett 80(12):2737–2740CrossRefGoogle Scholar
  11. Bao G (2002) Mechanics of biomolecules. J Mech Phys Solids 50(11):2237–2274CrossRefGoogle Scholar
  12. Barthlott W, Neinhuis C (1997) Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202(1):1–8Google Scholar
  13. Benthansen L, Feldtrasmussen B, Kverneland A, Deckert T (1993) Plasma disappearance of glycated and non-glycated albumin in type 1 (insulin-dependent) diabetes mellitus: evidence for charge dependent alterations of the plasma to lymph pathway. Diabetologia 36(4):361–363CrossRefPubMedGoogle Scholar
  14. Bico J, Marzolin C, Quéré D (1999) Pearl drops. Europhys Lett 47(2):220–226CrossRefGoogle Scholar
  15. Blom MT, Chmela E, Oosterbroek RE, Tijssen R, van den Berg A (2003) On-chip hydrodynamic chromatography separation and detection of nanoparticles and biomolecules. Anal Chem 75(24):6761–6768CrossRefPubMedGoogle Scholar
  16. Burgreen D, Nakache FR (1964) Electrokinetic flow in ultrafine capillary slits. J Phys Chem 68(5):1084–1091Google Scholar
  17. Bustamante C, Marko JF, Siggia ED, Smith S (1994) Entropic elasticity of lambda-phage DNA. Science 265:1599–1600PubMedGoogle Scholar
  18. Cannon DM, Kuo TC, Bohn PW, Sweedler JV (2003) Nanocapillary array interconnects for gated analyte injections and electrophoretic separations in multilayer microfluidic architectures. Anal Chem 75:2224–2230CrossRefPubMedGoogle Scholar
  19. Chen YL, Israelachvili J (1991) New mechanism of cavitation damage. Science 252:1157–1160Google Scholar
  20. Cho SK, Fan S-K, Moon H, Kim CJ (2002) Toward digital microfluidic circuits: creating, transporting, cutting and merging liquid droplets by electrowetting-based actuation. In: Proceedings of the 15th IEEE conference on micro electro mechanical systems (MEMS 2002), Las Vegas, Nevada, January, pp 32–35Google Scholar
  21. Chu S (2003) Biology and polymer physics at the single-molecule level. Phil Trans Roy Soc A 361(1805):689–698Google Scholar
  22. Churaev NV (2000) Liquid and vapor flows in porous bodies: surface phenomena. In: Topics in chemical engineering, vol 13. Gordon and Breach, New YorkGoogle Scholar
  23. Churaev NV (2003) Surface forces in wetting films. Adv Colloid Interface Sci 103(3):197–218PubMedGoogle Scholar
  24. Churaev NV, Sobolev VD, Somov AN (1984) Slippage of liquids over lyophobic solid-surfaces. J Colloid Interface Sci 97:574−581CrossRefGoogle Scholar
  25. Ciofalo M, Collins MW, Hennessy TR (1999) Nanoscale fluid dynamics in physiological processes: a review study. Wit Press, Southampton, BostonGoogle Scholar
  26. Clapham DE (2003) Symmetry, selectivity, and the 2003 Nobel Prize. Cell 115(6):641–646CrossRefPubMedGoogle Scholar
  27. Clarkson JR, Cui ZF, Darton RC (1999) Protein denaturation in foam. Part I: mechanism study. J Colloid Interface Sci 215(2):323–332CrossRefPubMedGoogle Scholar
  28. Daiguji H, Yang P, Majumdar A (2004) Ion transport in nanofluidic channels. Nano Lett 4:137–142CrossRefGoogle Scholar
  29. Deamer DW, Branton D (2002) Characterization of nucleic acids by nanopore analysis. Acc Chem Res 35(10):817–825CrossRefPubMedGoogle Scholar
  30. Demontis P, Stara G, Suffritti GB (2004) Dynamical behavior of one-dimensional water molecule chains in zeolites: nanosecond time-scale molecular dynamics simulations of bikitaite. J Chem Phys 120(20):9233–9244CrossRefPubMedGoogle Scholar
  31. Derjaguin BV, Churaev NV (1974) Polymolecular adsorption and capillary condensation in narrow slit pores. J Colloid Interf Sci 54(2):157–175CrossRefGoogle Scholar
  32. Derjaguin BV, Landau L (1941) Theory of the stability of strongly charged lyophobic sols and the adhesion of strongly charged particles in solutions of electrolytes. Acta Physico–chimica (URSS) 14:633–662Google Scholar
  33. Derjaguin BV, Titiyevskova AS, Abrikossova II, Malkina AD (1954) Investigations of the forces of interaction of surfaces in different media and their application to the problem of colloid stability. Discuss Faraday Soc 18:24–41CrossRefGoogle Scholar
  34. Derjaguin BV, Abrikossova II, Lifshitz EM (1956) Direct measurement of molecular attraction between solids separated by a narrow gap. Q Rev Chem Soc 10:295–329CrossRefGoogle Scholar
  35. Donnan FG (1924) The theory of membrane equilibria. Chem Rev 1:73–90Google Scholar
  36. Fernandez-Lopez S, Kim H-S, Choi EC, Delgado M, Granja JR, Khasanov A, Kraehenbuehl K, Long G, Weinberger DA, Wilcoxen KM, Ghadiri MR (2001) Antibacterial agents based on the cyclic D, L-α-peptide architecture. Nature 412:452–456CrossRefPubMedGoogle Scholar
  37. Fievet P, Szymczyk A, Aoubiza B, Pagetti J (2000) Evaluation of three methods for the characterisation of the membrane–solution interface: streaming potential, membrane potential and electrolyte conductivity inside pores. J Membr Sci 168(1–2):87–100CrossRefGoogle Scholar
  38. Fröberg JC, Rojas OJ, Claesson PM (1999) Surfaces force and measuring techniques. Int J Miner Process 56:1–30Google Scholar
  39. Gajar SA, Geis MW (1992) An ionic liquid-channel field-effect transistor. J Electrochem Soc 139(10):2833–2840Google Scholar
  40. Gee ML, Healy TW, White LR (1990) Hydrophobicity effects in the condensation of water films on quartz. J Colloid Interface Sci 140:450–465CrossRefGoogle Scholar
  41. de Gennes P-G (1980) Conformation of polymers attached to an interface. Macromolecules 13:1069–1075Google Scholar
  42. de Gennes P-G (1987) Polymers at an interface: a simplified view. Adv Colloid Interface Sci 27:189–207CrossRefGoogle Scholar
  43. de Gennes P-G (2002) On fluid/wall slippage. Langmuir 18:3413–3414CrossRefGoogle Scholar
  44. Giddings JC (1991) Unified separation science. Wiley, New York, p 31Google Scholar
  45. de Groot BL, Grubmüller H (2001) Water permeation across biological membranes: mechanism and dynamics of aquaporin-1 and GlpF. Science 294:2353–2357CrossRefPubMedGoogle Scholar
  46. Han J, Craighead HG (2000) Separation of long DNA molecules in a microfabricated entropic trap array. Science 288(5468):1026–1029CrossRefPubMedGoogle Scholar
  47. Han J, Turner SW, Craighead HG (1999) Entropic trapping and escape of long DNA molecules at submicron size constriction. Phys Rev Lett 83(8):1688–1691CrossRefGoogle Scholar
  48. Hartgerink JD, Granja JR, Milligan RA, Ghadiri MR (1996) Self-assembling peptide nanotubes. J Am Chem Soc 118(1):43–50CrossRefGoogle Scholar
  49. Heinz WF, Hoh JH (1999) Spatially resolved force spectroscopy of biological surfaces using the atomic force microscope. Trends Biotechnol 17:143–150Google Scholar
  50. Henriquez RR, Ito T, Sun L, Crooks RM (2004) The resurgence of Coulter counting for analyzing nanoscale objects. Analyst 129(6):478–482CrossRefPubMedGoogle Scholar
  51. Herminghaus S (2000) Roughness-induced non-wetting. Europhys Lett 52(2):165–170CrossRefGoogle Scholar
  52. Hod O, Rabbani E (2003) A coarse-grained model for a nanometer-scale molecular pump. Proc Natl Acad Sci USA 100(25):14661–14665Google Scholar
  53. Huang LR, Tegenfeldt JO, Kraeft JJ, Sturm JC, Austin RH, Cox EC (2002) A DNA prism for high-speed continuous fractionation of large DNA molecules. Nat Biotech 20(10):1048–1051Google Scholar
  54. Huang LR, Cox EC, Austin RH, Sturm JC (2004) Continuous particle separation through deterministic lateral displacement. Science 304(5673):987–990CrossRefPubMedGoogle Scholar
  55. Hunter RJ (1993) Introduction to modern colloid science. Oxford University Press, Oxford, UKGoogle Scholar
  56. Imre A, Martinas K, Rebelo LPN (1998) Thermodynamics of negative pressures in liquids. J Non-Equilibr Thermodyn 23(4):351–375Google Scholar
  57. Israelachvili JN (1992a) Interfacial forces. J Vac Sci Technol 10:2961–2971CrossRefGoogle Scholar
  58. Israelachvili J (1992b) Intermolecular and surfaces forces, 2nd edn. Academic Press, New YorkGoogle Scholar
  59. Israelachvili JN, Tabor D (1972) The measurement of Van Der Waals dispersion forces in the range 1.5 to 130 nm. Proc R Soc A 331:19–38Google Scholar
  60. Israelachvili JN, McGuiggan PM, Homola AM (1988) Dynamic properties of molecularly thin films. Science 240:189–191Google Scholar
  61. Israelachvili J, McGuiggan GEE, Gee M, Homola A, Robbins M, Thompson P (1990) Liquid dynamics in molecularly thin films. J Phys Condens Matter 2:SA89–SA98CrossRefGoogle Scholar
  62. Kadau K, Germann TC, Hadjiconstantinou NG, Lomdahl PS, Dimonte G, Holian BL, Alder BJ (2004) Nanohydrodynamics simulations: an atomistic view of the Rayleigh-Taylor instability. Proc Natl Acad Sci USA 101(16):5851–5855Google Scholar
  63. Kalra A, Garde S, Hummer G (2003) Osmotic water transport through carbon nanotube membranes. Proc Natl Acad Sci USA 100(18):10175–10180Google Scholar
  64. Kasianowicz JJ, Brandin E, Branton D, Deamer DW (1996) Characterization of individual polynucleotide molecules using a membrane channel. Proc Natl Acad Sci USA 93(24):13770–13773Google Scholar
  65. Kataoka DE, Troian SM (1999) Patterning liquid flow on the microscopic scale. Nature 402:794–797CrossRefGoogle Scholar
  66. Kettner C, Reimann P, Hänggi P, Müller F (2000) Drift ratchet. Phys Rev E 61(1):312–323CrossRefGoogle Scholar
  67. Kim Y, Morris MD (1995) Rapid pulsed field capillary electrophoretic separation of megabase nucleic acids. Anal Chem 67:784–786PubMedGoogle Scholar
  68. Kitamura K, Tokunaga M, Iwane AH, Yanagida T (1999) A single myosin head moves along an actin lament with regular steps of 5.3 nanometres. Nature 397(6715):129–134CrossRefPubMedGoogle Scholar
  69. Klein J, Kumacheva E (1995) Confinement-induced phase transitions in simple liquids. Science 269(5225):816–819Google Scholar
  70. Kruyt HR (1952) Colloid science. Elsevier, Amsterdam, The NetherlandsGoogle Scholar
  71. Ku JR, Stroeve P (2004) Protein diffusion in charged nanotubes: “on-off” behavior of molecular transport. Langmuir 20(5):2030–2032CrossRefGoogle Scholar
  72. Kuo TC, Cannon DM Jr, Shannon MA, Bohn PW, Sweedler JV (2003) Hybrid three-dimensional nanofluidic/microfluidic devices using molecular gates. Sens Actuators A 102(3):223–233CrossRefGoogle Scholar
  73. Lau KKS, Bico J, Teo KBK, Chhowalla M, Amaratunga GAJ, Milne WI, McKinley GH, Gleason KK (2003) Superhydrophobic carbon nanotube forests. Nano Lett 3(12):1701–1705CrossRefGoogle Scholar
  74. Levene MJ, Korlach J, Turner SW, Foquet M, Craighead HG, Webb WW (2003) Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299(5607):682–686CrossRefPubMedGoogle Scholar
  75. Levich VG (1962) Physicochemical hydrodynamics. Prentice Hall, Englewood Cliffs, New JerseyGoogle Scholar
  76. Levine S, Marriott JR, Neale G, Epstein N (1975) Theory of electrokinetic flow in fine cylindrical capillaries at high zeta-potentials. J Colloid Interface Sci 52(1):136–149CrossRefGoogle Scholar
  77. Lipton RJ (1995) DNA solution of hard computational problems. Science 268(5210):542–545PubMedGoogle Scholar
  78. Lyklema J (2001) Surface conduction. J Phys Condens Matter 13(21):5027–5034CrossRefGoogle Scholar
  79. Lyklema J, Minor M (1998) On surface conduction and its role in electrokinetics. Colloids Surf A 140(1–3):33–41CrossRefGoogle Scholar
  80. Lyklema J, Rovillard S, DeConinck J (1998) Electrokinetics: the properties of the stagnant layer unraveled. Langmuir 14(20):5659–5663CrossRefGoogle Scholar
  81. Lyklema J, van Leeuwen HP, Minor M (1999) DLVO-theory, a dynamic re-interpretation. Adv Colloid Interface Sci 83(1):33–69CrossRefGoogle Scholar
  82. Maa Y-F, Hsu CC (1997) Protein denaturation by combined effect of shear and air–liquid interface. Biotechnol Bioeng 54:503–512Google Scholar
  83. Magnasco MO (1993) Forced thermal ratchets. Phys Rev Lett 71(10):1477–1481CrossRefPubMedGoogle Scholar
  84. Manneville S, Cluzel Ph, Viovy J-L, Chatenay D, Caron F (1996) Evidence for the universal scaling behaviour of a freely relaxing DNA molecule. Europhys Lett 36(6):413–418CrossRefGoogle Scholar
  85. Marmur A (2004) The lotus effect: superhydrophobicity and metastability. Langmuir 20(9):3517–3519CrossRefGoogle Scholar
  86. Marquet C, Buguin A, Talini L, Silberzan P (2002) Rectified motion of colloids in asymmetrically structured channels. Phys Rev Lett 88(16):168301CrossRefPubMedGoogle Scholar
  87. Mela P, Onclin S, Goedbloed MH, Levi SA, van Hulst NF, van den Berg A (2003) Chemically driven switches for online detection of pH changes in microfluidic devices. In: Proceedings of the 17th European conference on solid-state transducers (Eurosensors XVII), Guimarães, Portugal, September 2003, pp 21–24Google Scholar
  88. Mela P, Tas NR, ten Elshof JE, van den Berg A (2004) Nanofluidics. In: Encyclopedia of nanoscience and nanotechnology. American Scientific Publishers, California, vol 6, no. 1, pp 739–755Google Scholar
  89. Meller A, Nivon L, Brandin E, Golovchenko J, Branton D (2000) Rapid nanopore discrimination between single polynucleotide molecules. Proc Natl Acad Sci USA 97(3):1079–1084Google Scholar
  90. Mercury L, Azaroual M, Zeyen H, Tardy Y (2003) Thermodynamic properties of solutions in metastable systems, under negative or positive pressures. Geochim Cosmochim Acta 67(10):1769–1785CrossRefGoogle Scholar
  91. Miklavic SJ, Marcelja S (1988) Interaction of surfaces carrying grafted polyelectrolytes. J Phys Chem 92:6718–6724Google Scholar
  92. Morfill GE, Rubin-Zuzic M, Rothermel H, Ivlev AV, Klumov BA, Thomas HM, Konopka U, Steinberg V (2004) Highly resolved fluid flows: “liquid plasmas” at the kinetic level. Phys Rev Lett 92(17):175004CrossRefPubMedGoogle Scholar
  93. Morra M (2000) On the molecular basis of fouling resistance. J Biomater Sci Polymer Edn 11(6):547–569CrossRefGoogle Scholar
  94. Mugele F, Salmeron M (2001) Frictional properties of thin chain alcohol films. J Chem Phys 114(4):1831–1836CrossRefGoogle Scholar
  95. Muthukumar M, Baumgartner A (1989) Effects of entropic barriers on polymer dynamics. Macromolecules 22:1937–1946Google Scholar
  96. Norde W (1986) Adsorption of proteins from solution at the solid–liquid interface. Adv Colloid Interface Sci 25(4):267–340CrossRefGoogle Scholar
  97. Oosterbroek RE (1999) Modeling, design and realization of microfluidic components. PhD thesis, University of Twente, Enschede, The NetherlandsGoogle Scholar
  98. Or D, Tuller M (2003) Hydraulic conductivity of partially saturated fractured porous media: flow in a cross-section. Adv Water Resour 26(8):883–898CrossRefGoogle Scholar
  99. Oron A, Davis SH, Bankoff SG (1997) Long-scale evolution of thin liquid films. Rev Mod Phys 69(3):931–980CrossRefGoogle Scholar
  100. van Oudenaarden A, Boxer SG (1999) Brownian ratchets: molecular separations in lipid bilayers supported on patterned arrays. Science 285(5430):1046–1048CrossRefPubMedGoogle Scholar
  101. Parker AR, Lawrence CR (2001) Water capture by a desert beetle. Nature 414(6859):33–34CrossRefPubMedGoogle Scholar
  102. Perkins TT, Quake SR, Smith DE, Chu S (1994) Relaxation of a single DNA molecule observed by optical microscopy. Science 264(5160):822–826PubMedGoogle Scholar
  103. Pincus P (1991) Colloid stabilization with grafted polyelectrolytes. Macromolecules 24:2912–2919Google Scholar
  104. Pohl HA (1978) Dielectrophoresis. Cambridge University Press, CambridgeGoogle Scholar
  105. Popat KC, Desai TA (2004) Poly(ethylene glycol) interfaces: an approach for enhanced performance of microfluidic systems. Biosens Bioelectron 19(9):1037–1040CrossRefPubMedGoogle Scholar
  106. Probstein RF (1994) Physicochemical hydrodynamics: an introduction, 2nd edn. Wiley, New YorkGoogle Scholar
  107. Pu QS, Yun JS, Temkin H, Liu SR (2004) Ion-enrichment and ion-depletion effect of nanochannel structures. Nano Lett 4(6):1099–1103CrossRefGoogle Scholar
  108. Qiao R, Aluru NR (2003) Ion concentrations and velocity profiles in nanochannel electroosmotic flows. J Chem Phys 118(10):4692–4701CrossRefGoogle Scholar
  109. Qiao R, Aluru NR (2004) Charge inversion and flow reversal in a nanochannel electro-osmotic flow. Phys Rev Lett 92(19):198301CrossRefPubMedGoogle Scholar
  110. Ransohoff TC, Gauglitz PA, Radke CJ (1987) Laminar flow of a wetting liquid along the corners of a predominantly occupied noncircular pore. AIChE J 33(5):753–765CrossRefGoogle Scholar
  111. Raviv U, Klein J (2002) Fluidity of bound hydration layers. Science 297(5586):1540–1543CrossRefPubMedGoogle Scholar
  112. Raviv U, Giasson S, Kampf N, Gohy JS, Jerome R, Klein J (2003) Lubrication by charged polymers. Nature 425(6954):163–165CrossRefPubMedGoogle Scholar
  113. Reyes DR, Iossifidis D, Auroux PA, Manz A (2002) Micro total analysis systems. Part I: introduction, theory, and technology. Anal Chem 74(12):2623–2636CrossRefPubMedGoogle Scholar
  114. Rice CL, Whitehead R (1965) Electrokinetic flow in a narrow cylindrical capillary. J Phys Chem 69(11):4017–4024Google Scholar
  115. Richards D (2003) Near-field microscopy: throwing light on the nanoworld. Phil Trans Roy Soc A 361(1813):2843–2857Google Scholar
  116. Rousselet J, Salomé L, Ajdari A, Prost J (1994) Directional motion of Brownian particles induced by a periodic asymmetric potential. Nature 370:446–448CrossRefGoogle Scholar
  117. Schasfoort RBM, Schlautmann S, Hendrikse L, van den Berg A (1999) Field-effect flow control for microfabricated fluidic networks. Science 286(5441):942–945CrossRefPubMedGoogle Scholar
  118. Schmuhl R, Sekulic J, Roy Chowdhury S, van Rijn CJM, Keizer K, van den Berg A, ten Elshof JE, Blank DHA (2004) Si-compatible ion selective mesoporous and microporous oxide interconnects with high tunability. Adv Mater 16(11):900–904CrossRefGoogle Scholar
  119. Schnell E (1956) Slippage of water over nonwettable surfaces. J Appl Phys 27:1149–1152Google Scholar
  120. Schoen M, Rykerd C, Diestler D, Cushman J (1989) Shear forces in molecularly thin films. Science 245(4923):1223–1225Google Scholar
  121. Schwarz MA, Hauser PC (2001) Recent developments in detection methods for microfabricated analytical devices. Lab Chip 1:1–6Google Scholar
  122. Siwy Z, Fuliński A (2002) Fabrication of a synthetic nanopore ion pump. Phys Rev Lett 89(19):198103CrossRefPubMedGoogle Scholar
  123. Spikes H, Granick S (2003) Equation for slip of simple liquids at smooth solid surfaces. Langmuir 19:5065–5071CrossRefGoogle Scholar
  124. Stein D, Kruithof M, Dekker C (2004) Surface-charge-governed ion transport in nanofluidic channels. Phys Rev Lett 93(3):035901CrossRefPubMedGoogle Scholar
  125. Strick T, Allemand J-F, Croquette V, Bensimon D (2000) Twisting and stretching single DNA molecules. Progr Biophys Mol Biol 74(1–2):115–140CrossRefGoogle Scholar
  126. Succi S (2001) The lattice Boltzmann equation: for fluid dynamics and beyond. Oxford University Press, OxfordGoogle Scholar
  127. Sun DD, Guo XE, Likhitpanichkul M, Lai WM, Mow VC (2004) The effect influence of the fixed negative charges on mechanical and electrical behaviors in articular cartilage under unconfined compression. J Biomech Eng–Trans ASME 126(1):6–16CrossRefGoogle Scholar
  128. Svoboda K, Schmidt CF, Schnapp BJ, Block SM (1993) Direct observation of kinesin stepping by optical trapping interferometry. Nature 365(6448):721–727CrossRefPubMedGoogle Scholar
  129. Tabor D, Winterton RHS (1969) The direct measurement of normal and retarded van der Waals forces. Proc R Soc A 312:435–450Google Scholar
  130. Tajkhorshid E, Nollert P, Jensen MØ, Miercke LJW, O’Connell J, Stroud RM, Schulten K (2002) Control of the selectivity of the aquaporin water channel family by global orientational tuning. Science 296(5567):525–530CrossRefPubMedGoogle Scholar
  131. Tanford C (1967) Physical chemistry of macromolecules. Wiley, New YorkGoogle Scholar
  132. Tas N, Sonnenberg T, Jansen H, Legtenberg R, Elwenspoek M (1996) Stiction in surface micromachining. J Micromech Microeng 6(4):385–397CrossRefGoogle Scholar
  133. Tas NR, Mela P, Kramer T, Berenschot JW, van den Berg A (2003) Capillarity induced negative pressure of water plugs in nanochannels. Nano Lett 3(11):1537–1540CrossRefGoogle Scholar
  134. Taunton H, Toprakciaglu C, Fetters L, Klein J (1990) Interactions between surfaces bearing end-adsorbed chains in a good solvent. Macromolecules 23:571–580Google Scholar
  135. Tegenfeldt JO, Bakajin O, Chou C-F, Chan SS, Austin R, Fann W, Liou L, Chan E, Duke T, Cox EC (2001) Near-field scanner for moving molecules. Phys Rev Lett 86(7):1378–1381CrossRefPubMedGoogle Scholar
  136. Tegenfeldt JO, Cao H, Reisner WW, Prinz C, Austin RH, Chou SY, Cox EC, Sturm JC (2004a) Stretching DNA in nanochannels. Biophys J (part 2 supplement) 86(1):596AGoogle Scholar
  137. Tegenfeldt JO, Prinz C, Cao H, Huang RL, Austin RH, Chou SY, Cox EC, Sturm JC (2004b) Micro- and nanofluidics for DNA analysis. Anal Bioanal Chem 378(7):1678–1692Google Scholar
  138. Tegenfeldt JO, Prinz C, Cao H, Chou S, Reisner WW, Riehn R, Wang YM, Cox EC, Sturm JC, Silberzan P, Austin RH (2004c) The dynamics of genomic-length DNA molecules in 100-nm channels. Proc Natl Acad Sci USA 101(30):10979–10983Google Scholar
  139. Thompson AP (2003) Nonequilibrium molecular dynamics simulation of electro-osmotic flow in a charged nanopore. J Chem Phys 119(14):7503–7511CrossRefGoogle Scholar
  140. Thorstenson YR, Hunicke-Smith SP, Oefner PJ, Davis RW (1998) An automated hydrodynamic process for controlled, unbiased DNA shearing. Genome Res 8(8):848–855PubMedGoogle Scholar
  141. Trevena DH (1987) Cavitation and tension in liquids. Adam Hilger, Bristol, UKGoogle Scholar
  142. Tuller M, Or D (2001) Hydraulic conductivity of variably saturated porous media: film and corner flow in angular pore space. Water Resour Res 37(5):1257–1276CrossRefGoogle Scholar
  143. Tuller M, Or D (2001) Hydraulic conductivity of variably saturated porous media: film and corner flow in angular pore space. Adv Water Resour 37(5):1257–1276Google Scholar
  144. Turner SWP, Cabodi M, Craighead HG (2002) Confinement-induced entropic recoil of single DNA molecules in a nanofluidic structure. Phys Rev Lett 88(12):128103CrossRefPubMedGoogle Scholar
  145. Verheijen HJJ, Prins MWJ (1999) Reversible electrowetting and trapping of charge: model and experiments. Langmuir 15(20):6616–6620CrossRefGoogle Scholar
  146. Versluis M, Schmitz B, von der Heydt A, Lohse D (2000) How snapping shrimp snap: through cavitating bubbles. Science 289(5487):2114–2117CrossRefPubMedGoogle Scholar
  147. Verwey EJW, Overbeek JTG (1948) Theory of the stability of lyophobic colloids. Elsevier, Amsterdam, The NetherlandsGoogle Scholar
  148. Vilkner T, Janasek D, Manz A (2004) Micro total analysis systems: recent developments. Anal Chem 76(12):3373–3385CrossRefPubMedGoogle Scholar
  149. Vinogradova OI (1999) Slippage of water over hydrophobic surfaces. Int J Miner Process 56(1–4):31–60CrossRefGoogle Scholar
  150. Volkmuth WD, Austin RH (1992) DNA electrophoresis in microlithographic arrays. Nature 358:600–602CrossRefPubMedGoogle Scholar
  151. Volkmuth WD, Duke T, Wu MC, Austin RH, Szabo A (1994) DNA electrodiffusion in a 2D array of posts. Phys Rev Lett 72(13):2117–2120CrossRefPubMedGoogle Scholar
  152. Wanless EJ, Christenson HK (1994) Interaction between surfaces in ethanol: adsorption, capillary condensation, and solvation forces. J Chem Phys 101(5):4260–4267CrossRefGoogle Scholar
  153. Watanabe K, Yanuar, Udagawa H (1999) Drag reduction of Newtonian fluid in a circular pipe with a highly water-repellent wall. J Fluid Mech 382:225–238CrossRefGoogle Scholar
  154. Web site of the Theoretical and Computational Biophysics Group. Structure, dynamics, and function of aquaporins. Home page at http://www.ks.uiuc.edu/Research/aquaporins/, cited on 1 October 2004
  155. Wong PK, Lee Y-K, Ho C-M (2003) Deformation of DNA molecules by hydrodynamic focusing. J Fluid Mech 497:55–65CrossRefGoogle Scholar
  156. Zhu Y, Granick S (2001) Rate-dependent slip of Newtonian liquid at smooth surfaces. Phys Rev Lett 87(9):096105CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.BIOS/Lab-on-a-Chip Group, MESA+ Research InstituteUniversity of TwenteEnschedeNetherlands

Personalised recommendations