Microfluidics and Nanofluidics

, Volume 1, Issue 3, pp 197–207 | Cite as

A PMMA valveless micropump using electromagnetic actuation

  • C. Yamahata
  • C. Lotto
  • E. Al-Assaf
  • M. A. M. Gijs
Research Paper


We have fabricated and characterized a polymethylmethacrylate (PMMA) valveless micropump. The pump consists of two diffuser elements and a polydimethylsiloxane (PDMS) membrane with an integrated composite magnet made of NdFeB magnetic powder. A large-stroke membrane deflection (~200 μm) is obtained using external actuation by an electromagnet. We present a detailed analysis of the magnetic actuation force and the flow rate of the micropump. Water is pumped at flow rates of up to 400 µl/min and backpressures of up to 12 mbar. We study the frequency-dependent flow rate and determine a resonance frequency of 12 and 200 Hz for pumping of water and air, respectively. Our experiments show that the models for valveless micropumps of A. Olsson et al. (J Micromech Microeng 9:34, 1999) and L.S. Pan et al. (J Micromech Microeng 13:390, 2003) correctly predict the resonance frequency, although additional modeling of losses is necessary.


Diffuser micropump Lab-on-a-chip Powder blasting 



The authors gratefully acknowledge the Swiss Commission for Technology and Innovation for financially supporting this project (Project CTI-Medtech 4960.1 MTS) and Dr D. Solignac and Dr A. Donzel for useful discussions.


  1. Accoto D, Carrozza MC, Dario P (2000) Modelling of micropumps using unimorph piezoelectric actuator and ball valves. J Micromech Microeng 10:277–281Google Scholar
  2. Beebe DJ, Moore JS, Bauer JM, Yu Q, Liu RH, Devadoss C, Jo BH (2000) Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 404:588–590Google Scholar
  3. Blevins RD (1984) Applied fluid dynamics handbook. Van Nostrand-Reinhold, New YorkGoogle Scholar
  4. Böhm S, Olthuis W, Bergveld P (1999) A plastic micropump constructed with conventional techniques and materials. Sens Actuators A, Phys 77:223–228Google Scholar
  5. Cho HJ, Ahn CH (2003) Microscale resin-bonded permanent magnets for magnetic micro-electro-mechanical systems applications. J Appl Phys 93:8674–8676Google Scholar
  6. Cockrell DJ, Markland E (1963) A review of incompressible diffuser flow. Aircraft Eng 35:286–292Google Scholar
  7. Forster F, Bardell R, Afromowitz M, Sharma N (1995) Design, fabrication and testing of fixed-valve micropumps. In: Proceedings of the ASME Fluids Engineering Division, International Mechanical Engineering Congress and Exposition, San Francisco, USA, pp 39–44Google Scholar
  8. Gerlach T (1998) Microdiffusers as dynamic passive valves for micropump applications. Sens Actuators A, Phys 69:181–191Google Scholar
  9. Gerlach T, Schuenemann M, Wurmus H (1995) A new micropump principle of the reciprocating type using pyramidic micro flowchannels as passive valves. J Micromech Microeng 5:199–201Google Scholar
  10. Gibson AH (1945) Hydraulics and its applications. Constable, London, p 93Google Scholar
  11. Greivell N, Hannaford B (1997) The design of a ferrofluid magnetic pipette. IEEE Trans Biomed Eng 44:129–135Google Scholar
  12. Hatch A, Kamholz AE, Holman G, Yager P, Bohringer KF (2001) A ferrofluidic magnetic micropump. J Microelectromech Syst 10:215–221Google Scholar
  13. Khoo M, Liu C (2000) A novel micromachined magnetic membrane microfluid pump. In: International Conference of the IEEE Engineering in Medicine and Biology Society (EMB), Chicago, ILGoogle Scholar
  14. Lagorce LK, Brand O, Allen MG (1999) Magnetic microactuators based on polymer magnets. J Microelectromech Syst 8:2–9Google Scholar
  15. Liu C (1998) Development of surface micromachined magnetic actuators using electroplated permalloy. J Mechatronics 613–633Google Scholar
  16. Manz A, Fettinger JC, Verpoorte E, Ludi H, Widmer HM, Harrison DJ (1991) Micromachining of monocrystalline silicon and glass for chemical analysis systems—a look into next century’s technology or just a fashionable craze? Trends Anal Chem 10:144–149Google Scholar
  17. Manz A, Graber N, Widmer HM (1990) Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sens Actuators B, Chem 1:244–248Google Scholar
  18. Morris CJ, Forster FK (2003) Low-order modeling of resonance for fixed-valve micropumps based on first principles. J Microelectromech Syst 12:325–334Google Scholar
  19. Naudascher E, Rockwell D (1994) Flow-induced vibrations: an engineering guide. Balkema, Brookfield, USAGoogle Scholar
  20. Nguyen N-T, Huang X (2001) Miniature valveless pumps based on printed circuit board technique. Sens Actuators A, Phys 88:104–111Google Scholar
  21. Nguyen N-T, Huang XY, Chuan TK (2002) MEMS-micropumps: a review. J Fluids Eng 124:384–392Google Scholar
  22. Nguyen N-T, Truong T-Q (2004) A fully polymeric micropump with piezoelectric actuator. Sens Actuators B, Chem 97:139–145Google Scholar
  23. Olsson A (1998) Valve-less diffuser micropumps. PhD thesis, Royal Institute of Technology, Stockholm, SwedenGoogle Scholar
  24. Olsson A, Enoksson P, Stemme G, Stemme E (1995) A valve-less planar pump in silicon. In: Proceeding of the 8th IEEE International Conference on Transducers, Stockholm, Sweden, vol 2, pp 291–294Google Scholar
  25. Olsson A, Larsson O, Holm J, Lundbladh L, Ohman O, Stemme G (1998) Valve-less diffuser micropumps fabricated using thermoplastic replication. Sens Actuators A, Phys, 64:63–68Google Scholar
  26. Olsson A, Stemme G, Stemme E (1996) Diffuser-element design investigation for valve-less pumps. Sens Actuators A, Phys 57:137–143Google Scholar
  27. Olsson A, Stemme G, Stemme E (1999) A numerical design study of the valveless diffuser pump using a lumped-mass model. J Micromech Microeng 9:34–44Google Scholar
  28. Pan LS, Ng TY, Wu XH, Lee HP (2003) Analysis of valveless micropumps with inertial effects. J Micromech Microeng 13:390–399Google Scholar
  29. Patterson GN (1938) Modern diffuser design. Aircraft Eng 10:267Google Scholar
  30. Richter M, Linnemann R, Woias P (1998) Robust design of gas and liquid micropumps. Sens Actuators A, Phys 68:480–486Google Scholar
  31. Santra S, Holloway P, Batich CD (2002) Fabrication and testing of a magnetically actuated micropump. Sens Actuators B, Chem 87:358–364Google Scholar
  32. Singhal V, Garimella SV, Murthy JY (2004) Low Reynolds number flow through nozzle-diffuser elements in valveless micropumps. Sens Actuators (in press)Google Scholar
  33. Stemme E, Stemme G (1993) A valveless diffuser/nozzle-based fluid pump. Sens Actuators A, Phys 39:159–167Google Scholar
  34. Tay FEH, Choong WO (2002) Literature review for micropumps. In: Tay FEH (ed) Microfluidics and BioMEMS applications. Kluwer, Boston, MAGoogle Scholar
  35. Van de Pol FCM, Van Lintel HTG (1990) A thermopneumatic micropump based on micro-engineering techniques. Sens Actuators A, Phys 21:198–202Google Scholar
  36. Van Lintel HTG, Van de Pol FCM, Bouwstra S (1988) A piezoelectric micropump based on micromachining of silicon. Sens Actuators 15:153–167Google Scholar
  37. White FM (1998) Fluid mechanics, 4th edn. McGraw-Hill, New YorkGoogle Scholar
  38. Yamahata C, Chastellain M, Parashar VK, Petri A, Hofmann H, Gijs MAM (2004) Plastic micropump with ferrofluidic actuation. J Microelectromech Syst (in press)Google Scholar
  39. Yamahata C, Gijs MAM (2004) Plastic micropumps using ferrofluid and magnetic membrane actuation. In: Proceeding of the 17th IEEE International Conference on Micro electro mechanical systems, Maastricht, The Netherlands, pp 458–461Google Scholar
  40. Zhang W, Ahn CH (1996) A bi-directional magnetic micropump on a silicon wafer. Paper presented at the “Solid-state sensor and actuator workshop”, Hilton Head Island, SC, USAGoogle Scholar
  41. Zimmermann S, Frank LA, Liepmann D, Pisano AP (2004) A planar micropump utilizing thermopneumatic actuation and in-plane flap valves. In: Proceeding of the 17th IEEE International Conference on Micro electro mechanical systems, Maastricht, The Netherlands, pp 462–465Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • C. Yamahata
    • 1
  • C. Lotto
    • 1
  • E. Al-Assaf
    • 1
  • M. A. M. Gijs
    • 1
  1. 1.Institute of Microelectronics and MicrosystemsSwiss Federal Institute of Technology Lausanne Lausanne EPFLSwitzerland

Personalised recommendations