Journal of Medical Ultrasonics

, Volume 45, Issue 3, pp 417–423 | Cite as

Quantitative assessment of thyroid gland elasticity with shear-wave elastography in pediatric patients with Hashimoto’s thyroiditis

  • Sedat Giray KandemirliEmail author
  • Zuhal Bayramoglu
  • Emine Caliskan
  • Zeynep Nur Akyol Sari
  • Ibrahim Adaletli
Original Article



Hashimoto’s thyroiditis is the most common autoimmune thyroid disorder in the pediatric age range. Measurement of thyroid gland size is an essential component in evaluation and follow-up of thyroid pathologies. Along with size, tissue elasticity is becoming a more commonly used parameter in evaluation of parenchyma in inflammatory diseases. The aim of the current study was to assess thyroid parenchyma elasticity by shear-wave elastography in pediatric patients with Hashimoto’s thyroiditis; and compare the elasticity values to a normal control group.

Materials and methods

In this study; thyroid glands of 59 patients with a diagnosis of Hashimoto’s thyroiditis based on ultrasonographic and biochemical features, and 26 healthy volunteers without autoimmune thyroid disease and thyroid function disorders, were evaluated with shear-wave elastography. Patients with Hashimoto thyroiditis were further subdivided into three categories based on gray-scale ultrasonography findings as focal thyroiditis (grade 1), diffuse thyroiditis (grade 2), and fibrotic thyroid gland (grade 3).


Patients with Hashimoto’s thyroiditis (n = 59) had significantly higher elasticity values (14. 9 kPa; IQR 12.9–17.8 kPa) than control subjects (10.6 kPa; IQR 9.0–11.3 kPa) (p < 0.001). Of the 59 patients with Hashimoto’s thyroiditis, 23 patients had focal thyroiditis involving less than 50% of the gland categorized as grade 1, 24 patients had diffuse involvement of the thyroid gland categorized as grade 2, and 12 patients had marked hyperechoic septations and pseudonodular appearance categorized as grade 3 on gray-scale ultrasound. Based on elastography, grade 3 patients had significantly higher elasticity values (19.7 kPa; IQR 17.8–21.5 kPa) than patients with grade 2 (15.5 kPa; IQR 14.5–17.8 kPa) and grade 1 thyroiditis (12.8 kPa; IQR 11.9–13.1 kPa) (p < 0.05). Patients with grade 2 thyroiditis had significantly higher elasticity values than those with grade 1 thyroiditis (p < 0.05).


Gray-scale ultrasound findings of heterogeneous echotexture and hypoechoic echogenicity reflect a longer duration of inflammation and may not be found in the initial stages of thyroiditis. Our results indicate that shear-wave elastography could be used to evaluate the degree of fibrosis in Hashimoto’s thyroiditis.


Shear-wave elastography Hashimoto’s thyroiditis Medication 


Compliance with ethical standards

Ethical statements

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2008.

Conflict of interest

All authors state that they have no conflicts of interest to declare.


  1. 1.
    Ruchala M, Szmyt K, Slawek S, et al. Ultrasound sonoelastography in the evaluation of thyroiditis and autoimmune thyroid disease. Endokrynol Pol. 2014;65:520–6.CrossRefPubMedGoogle Scholar
  2. 2.
    Brown RS. Autoimmune thyroiditis in childhood. J Clin Res Pediatr Endocrinol. 2013;5:45–9.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Lorini R, Gastaldi R, Traggiai C, et al. Hashimoto’s thyroiditis. Pediatr Endocrinol Rev. 2003;1:205–11.PubMedGoogle Scholar
  4. 4.
    Tas F, Bulut S, Egilmez H, et al. Normal thyroid volume by ultrasonography in healthy children. Ann Trop Paediatr. 2002;22:375–9.CrossRefPubMedGoogle Scholar
  5. 5.
    Arda K, Ciledag N, Aktas E, et al. Quantitative assessment of normal soft-tissue elasticity using shear-wave ultrasound elastography. Am J Roentgenol. 2011;197:532–6.CrossRefGoogle Scholar
  6. 6.
    Pawlus A, Sokolowska-Dabek D, Szymanska K, et al. Ultrasound Elastography-review of techniques and its clinical applications in pediatrics-part 1. Adv Clin Exp Med. 2015;24:537–43.CrossRefPubMedGoogle Scholar
  7. 7.
    Hekimoglu K, Yildirim Donmez F, Arslan S, et al. The role of shear wave elastography in the diagnosis of chronic autoimmune thyroiditis. Med Ultrason. 2015;17:322–6.CrossRefPubMedGoogle Scholar
  8. 8.
    Zhang F, Zhao X, Han R, et al. Comparison of acoustic radiation force impulse imaging and strain elastography in differentiating malignant from benign thyroid nodules. J Ultrasound Med. 2017;36:2533–43.CrossRefPubMedGoogle Scholar
  9. 9.
    Tian W, Hao S, Gao B, Jiang Y, et al. Comparing the diagnostic accuracy of RTE and SWE in differentiating malignant thyroid nodules from benign ones: a meta-analysis. Cell Physiol Biochem. 2016;39:2451–63.CrossRefPubMedGoogle Scholar
  10. 10.
    Zhang YZ, Xu T, Gong HY, et al. Application of high-resolution ultrasound, real-time elastography, and contrast-enhanced ultrasound in differentiating solid thyroid nodules. Medicine. 2016;95:e5329.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Bae U, Dighe M, Dubinsky T, et al. Ultrasound thyroid elastography using carotid artery pulsation: preliminary study. J Ultrasound Med. 2007;26:797–805.CrossRefPubMedGoogle Scholar
  12. 12.
    Liu B, Liang J, Zhou L, et al. Shear wave elastography in the diagnosis of thyroid nodules with coexistent chronic autoimmune Hashimoto’s thyroiditis. Otolaryngol Head Neck Surg. 2015;153:779–85.CrossRefPubMedGoogle Scholar
  13. 13.
    Magri F, Chytiris S, Capelli V, et al. Shear wave elastography in the diagnosis of thyroid nodules: feasibility in the case of coexistent chronic autoimmune Hashimoto’s thyroiditis. Clin Endocrinol. 2012;76:137–41.CrossRefGoogle Scholar
  14. 14.
    Fukuhara T, Matsuda E, Izawa S, et al. Utility of shear wave elastography for diagnosing chronic autoimmune thyroiditis. J Thyroid Res. 2015;2015:164548.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Ruchala M, Szczepanek-Parulska E, Zybek A, et al. The role of sonoelastography in acute, subacute and chronic thyroiditis: a novel application of the method. Eur J Endocrinol. 2012;166:425–32.CrossRefPubMedGoogle Scholar
  16. 16.
    Menzilcioglu MS, Duymus M, Gungor G, et al. The value of real-time ultrasound elastography in chronic autoimmune thyroiditis. Br J Radiol. 2014;87:20140604.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Sporea I, Vlad M, Bota S, et al. Thyroid stiffness assessment by acoustic radiation force impulse elastography (ARFI). Ultraschall Med. 2011;32:281–5.CrossRefPubMedGoogle Scholar
  18. 18.
    Vlad M, Golu I, Bota S, et al. Real-time shear wave elastography may predict autoimmune thyroid disease. Wien Klin Wochenschr. 2015;127:330–6.CrossRefPubMedGoogle Scholar
  19. 19.
    Sporea I, Sirli R, Bota S, et al. ARFI elastography for the evaluation of diffuse thyroid gland pathology: preliminary results. World J Radiol. 2012;4:174–8.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Ceyhan Bilgici M, Saglam D, Delibalta S, et al. Shear wave velocity of the healthy thyroid gland in children with acoustic radiation force impulse elastography. J Med Ultrason. 2018;45:75–80.CrossRefGoogle Scholar
  21. 21.
    Cekic B, Parlak A, Koksel Y, et al. Real-time ultrasound elastography evaluation of the thyroid gland in adolescent patients with hashimoto thyroiditis. Biomed Res. 2017;28:7534–9.Google Scholar
  22. 22.
    Ozturk M, Yildirim R. The usefulness of strain wave elastography in the diagnosis and grading of Hashimoto’s thyroiditis in children. Radiol Med. 2017;122:960–6.CrossRefPubMedGoogle Scholar
  23. 23.
    Cosgrove DO, Berg WA, Dore CJ, et al. Shear wave elastography for breast masses is highly reproducible. Eur Radiol. 2012;22:1023–32.CrossRefPubMedGoogle Scholar
  24. 24.
    Liu B, Liang J, Zheng Y, et al. Two-dimensional shear wave elastography as promising diagnostic tool for predicting malignant thyroid nodules: a prospective single-centre experience. Eur Radiol. 2015;25:624–34.CrossRefPubMedGoogle Scholar
  25. 25.
    Raber W, Gessl A, Nowotny P, et al. Thyroid ultrasound versus antithyroid peroxidase antibody determination: a cohort study of four hundred fifty-one subjects. Thyroid. 2002;12:725–31.CrossRefPubMedGoogle Scholar
  26. 26.
    Caturegli P, De Remigis A, Rose NR. Hashimoto thyroiditis: clinical and diagnostic criteria. Autoimmun Rev. 2014;13:391–7.CrossRefPubMedGoogle Scholar
  27. 27.
    Pandit AA, Vijay Warde M, Menon PS. Correlation of number of intrathyroid lymphocytes with antimicrosomal antibody titer in Hashimoto’s thyroiditis. Diagn Cytopathol. 2003;28:63–5.CrossRefPubMedGoogle Scholar
  28. 28.
    Pearce EN, Farwell AP, Braverman LE. Thyroiditis. N Engl J Med. 2003;348:2646–55.CrossRefPubMedGoogle Scholar
  29. 29.
    Schiemann U, Avenhaus W, Konturek JW, et al. Relationship of clinical features and laboratory parameters to thyroid echogenicity measured by standardized grey scale ultrasonography in patients with Hashimoto’s thyroiditis. Med Sci Monit. 2003;9:13–7.Google Scholar
  30. 30.
    Willms A, Bieler D, Wieler H, et al. Correlation between sonography and antibody activity in patients with Hashimoto thyroiditis. J Ultrasound Med. 2013;32:1979–86.CrossRefPubMedGoogle Scholar
  31. 31.
    Yurttutan N, Gungor G, Bilal N, et al. Interpretation of thyroid glands in a group of healthy children: real-time ultrasonography elastography study. J Pediatr Endocrinol Metab. 2016;29:933.CrossRefPubMedGoogle Scholar

Copyright information

© The Japan Society of Ultrasonics in Medicine 2018

Authors and Affiliations

  • Sedat Giray Kandemirli
    • 1
    Email author
  • Zuhal Bayramoglu
    • 2
  • Emine Caliskan
    • 2
  • Zeynep Nur Akyol Sari
    • 2
  • Ibrahim Adaletli
    • 1
  1. 1.Department of Radiology, Cerrahpasa Medical FacultyIstanbul UniversityIstanbulTurkey
  2. 2.Department of Radiology, Istanbul Medical FacultyIstanbul UniversityIstanbulTurkey

Personalised recommendations