Journal of Medical Ultrasonics

, Volume 42, Issue 2, pp 151–174 | Cite as

JSUM ultrasound elastography practice guidelines: pancreas

  • Yoshiki HirookaEmail author
  • Takamichi Kuwahara
  • Atsushi Irisawa
  • Fumihide Itokawa
  • Hiroki Uchida
  • Naoki Sasahira
  • Natsuko Kawada
  • Yuya Itoh
  • Tsuyoshi Shiina
Review Article


Ultrasound elastography is a relatively new diagnostic technique for measuring the elasticity (hardness) of tissue. Eleven years have passed since the debut of elastography. Various elastography devices are currently being marketed by manufacturers under different names. Pancreatic elastography can be used not only with transabdominal ultrasonography but also with endoscopic ultrasonography, but some types of elastography are difficult to perform for the pancreas. These guidelines aim to classify the various types of elastography into two major categories depending on the differences in the physical quantity (strain, shear wave), and to present the evidence for pancreatic elastography and how to use pancreatic elastography in the present day. But the number of reports on ultrasound elastography for the pancreas is still small, and there are no reports on some elastography devices for the pancreas. Therefore, these guidelines do not recommend methods of imaging and analysis by elastography device.


Pancreas Strain Shear wave Elasticity imaging Elastography 



We express our deep gratitude to those who kindly cooperated with us in the making of this paper and provided us with advice as well as images, including: Dr. Takashi Kumada and Dr. Katsuhiko Otobe (Ogaki Municipal Hospital); Dr. Yoshihiko Tachi, Dr. Tadashi Iida, and Dr. Katsumi Nakano (Komaki Municipal Hospital); Ms. Akiko Tonomura and Ms. Chisato Torisawa (Hitachi Aloka); Mr. Masahiro Saito (Siemens); Mr. Shunichiro Tanigawa (GE); Mr. Masahiko Yano (Toshiba); Ms. Yukako Tsubone and Mr. Hiroyuki Maeda (Olympus); and Mr. Masahiro Kozaki (Philips).

Conflict of interest


Ethical standard

Human rights statements and informed consent: All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2008 (5). Informed consent was obtained from all patients for being included in the study.


  1. 1.
    Ophir J, Céspedes I, Ponnekanti H, et al. Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason Imaging. 1991;13:111–34.CrossRefPubMedGoogle Scholar
  2. 2.
    Samani A, Zubovits J, Plewes D. Elastic moduli of normal and pathological human breast tissues: an inversion-technique-based investigation of 169 samples. Phys Med Biol. 2007;52:1565–76.CrossRefPubMedGoogle Scholar
  3. 3.
    Krouskop TA, Wheeler TM, Kallel F, et al. The elastic moduli of breast and prostate tissues under compression. Ultrason Imaging. 1998;20:260–74.CrossRefPubMedGoogle Scholar
  4. 4.
    Wellman PS, Howe RD, Dalton E, et al. Breast tissue stiffness in compression is correlated to histological diagnosis. Harvard Bio Robotics Laboratory, Technical Report, 1999.Google Scholar
  5. 5.
    Ueno E, Tohno E, Soeda S, et al. Dynamic tests in real-time breast echography. Ultrasound Med Biol. 1998;14:53–7.CrossRefGoogle Scholar
  6. 6.
    Shiina T, Doyley MM, Bamber JC. Strain imaging using combined RF and envelope autocorrelation processing. In: Proceedings of the 1996 IEEE int ultrasonics symposium.1996; 1331–6. 14.Google Scholar
  7. 7.
    Yamakawa, M, T Shiina. Strain estimation using the extended combined autocorrelation method. J Jpn J Appl Phys. 2001;40:3872.Google Scholar
  8. 8.
    Yamakawa M, Nitta N, Shiina T, et al. High-speed freehand tissue elasticity imaging for breast diagnosis. Jpn J Appl Phys. 2003;42:3265–70.CrossRefGoogle Scholar
  9. 9.
    Shiina T, Yamakawa M, Nitta N, Ueno E. Recent prognosis of ultrasound elasticity imaging technology. Int Congr Ser. 2004;1274:59–63.CrossRefGoogle Scholar
  10. 10.
    Itoh A, Ueno E, Tohno E, et al. Breast disease: clinical application of US elastography for diagnosis. Radiology. 2006;239:341–50.CrossRefPubMedGoogle Scholar
  11. 11.
    Nakashima K, Shiina T, Sakurai M, et al. JSUM ultrasound elastography practice guidelines: breast. J Med Ultrasonics. 2013;40:359–91.CrossRefGoogle Scholar
  12. 12.
    Tsutsumi M, Miyagawa T, Matsumura T, et al. The impact of real-time tissue elasticity imaging (elastography) on the detection of prostate cancer: clinicopathological analysis. Int J Clin Oncol. 2007;12:250–5.CrossRefPubMedGoogle Scholar
  13. 13.
    Lyshchik A, Higashi T, Asato R, et al. Thyroid gland tumor diagnosis at US elastography. Radiology. 2005;237:202–11.CrossRefPubMedGoogle Scholar
  14. 14.
    Kudo M, Shiina T, Moriyasu F, et al. JSUM ultrasound elastography practice guidelines: liver. J Med Ultrasonics. 2013;40:325–57.CrossRefGoogle Scholar
  15. 15.
    Hirooka Y, Itoh A, Hashimoto S, et al. Utility of EUS: elastography in the diagnosis of pancreatic diseases. Gastrointest Endosc. 2005;61:AB282.Google Scholar
  16. 16.
    Uchida H, Hirooka Y, Itoh A, et al. Utility of elastography in the diagnosis of pancreatic diseases using transabdominal ultrasonography. Gastroenterology. 2005;128:A536–A536.Google Scholar
  17. 17.
    DeWitt J, McGreevy K, LeBlanc J, et al. EUS-guided Trucut biopsy of suspected nonfocal chronic pancreatitis. Gastrointest Endosc. 2005;62:76–84.CrossRefPubMedGoogle Scholar
  18. 18.
    Varadarajulu S, Eltoum I, Tamhane A, et al. Histopathologic correlates of noncalcific chronic pancreatitis by EUS: a prospective tissue characterization study. Gastrointest Endosc. 2007;66:501–9.CrossRefPubMedGoogle Scholar
  19. 19.
    Catalano MF, Sahai A, Levy M, et al. EUS-based criteria for the diagnosis of chronic pancreatitis: the Rosemont classification. Gastrointest Endosc. 2009;69:1251–61.CrossRefPubMedGoogle Scholar
  20. 20.
    Shimosegawa T, Kataoka K, Kamisawa T, et al. The revised Japanese clinical diagnostic criteria for chronic pancreatitis. J Gastroenterol. 2010;45:584–91.CrossRefPubMedGoogle Scholar
  21. 21.
    Shiina T. JSUM ultrasound elastography practice guidelines: basics and terminology. J Med Ultrasonics. 2013;40:309–23.CrossRefGoogle Scholar
  22. 22.
    Uchida H, Hirooka Y, Itoh A, et al. Feasibility of tissue elastography using transcutaneous ultrasonography for the diagnosis of pancreatic diseases. Pancreas. 2009;38:17–22.CrossRefPubMedGoogle Scholar
  23. 23.
    Kawada N, Tanaka S, Uehara H, et al. Feasibility of second-generation transabdominal ultrasound-elastography to evaluate solid pancreatic tumors: preliminary report of 36 cases. Pancreas. 2012;41:978–80.CrossRefPubMedGoogle Scholar
  24. 24.
    Itokawa F, Itoi T, Sofuni A, et al. EUS elastography combined with the strain ratio of tissue elasticity for diagnosis of solid pancreatic masses. J Gastroenterol. 2011;46:843–53.CrossRefPubMedGoogle Scholar
  25. 25.
    Giovannini M. Endoscopic ultrasound elastography. Pancreatology. 2011;11:34–9.CrossRefPubMedGoogle Scholar
  26. 26.
    Iglesias-Garcia J, Larino-Noia J, Abdulkader I, et al. EUS elastography for the characterization of solid pancreatic masses. Gastrointest Endosc. 2009;70:1101–8.CrossRefPubMedGoogle Scholar
  27. 27.
    Iglesias-Garcia J, Larino-Noia J, Abdulkader I, et al. Quantitative endoscopic ultrasound elastography: an accurate method for the differentiation of solid pancreatic masses. Gastroenterology. 2010;139:1172–80.CrossRefPubMedGoogle Scholar
  28. 28.
    Ueno E, Umemoto T, Bando H, et al. New quantitative method in breast elastography: fat-lesion ratio (FLR). In: Proceedings of the radiological society of North America scientific assembly and annual meeting. 2007; November 25–30, Chicago, IL.Google Scholar
  29. 29.
    Săftoiu A, Vilmann P, Gorunescu F, et al. Accuracy of endoscopic ultrasound elastography used for differential diagnosis of focal pancreatic masses: a multicenter study. Endoscopy. 2011;43:596–603.CrossRefPubMedGoogle Scholar
  30. 30.
    Li X, Xu W, Shi J, et al. Endoscopic ultrasound elastography for differentiating between pancreatic adenocarcinoma and inflammatory masses: a meta-analysis. World J Gastroenterol. 2013;19:6284–91.CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    Xu W, Shi J, Li X, et al. Endoscopic ultrasound elastography for differentiation of benign and malignant pancreatic masses: a systemic review and meta-analysis. Eur J Gastroenterol Hepatol. 2013;25:218–24.CrossRefPubMedGoogle Scholar
  32. 32.
    Dawwas MF, Taha H, Leeds JS, et al. Diagnostic accuracy of quantitative EUS elastography for discriminating malignant from benign solid pancreatic masses: a prospective, single-center study. Gastrointest Endosc. 2012;76:953–61.CrossRefPubMedGoogle Scholar
  33. 33.
    Mei M, Ni J, Liu D, et al. EUS elastography for diagnosis of solid pancreatic masses: a meta-analysis. Gastrointest Endosc. 2013;77:578–89.CrossRefPubMedGoogle Scholar
  34. 34.
    Ying L, Lin X, Xie ZL, et al. Clinical utility of endoscopic ultrasound elastography for identification of malignant pancreatic masses: a meta-analysis. J Gastroenterol Hepatol. 2013;28:1434–43.CrossRefPubMedGoogle Scholar
  35. 35.
    Pei Q, Zou X, Zhang X, et al. Diagnostic value of EUS elastography in differentiation of benign and malignant solid pancreatic masses: a meta-analysis. Pancreatology. 2012;12:402–8.Google Scholar
  36. 36.
    Kawada N, Tanaka S, Uehara H, et al. Alteration of strain ratio evaluated by transabdominal ultrasound elastography may predict the efficacy of preoperative chemoradiation performed for pancreatic ductal carcinoma: preliminary results. Hepatogastroenterology. 2014;61:478–81.Google Scholar
  37. 37.
    Shiina T, Nitta N, Ueno E, et al. Real time tissue elasticity imaging using the combined autocorrelation method. J Med Ultrasonics. 2002;29:119–28.Google Scholar
  38. 38.
    Mateen MA, Muheet KA, Mohan RJ, et al. Evaluation of ultrasound based acoustic radiation force impulse (ARFI) and eSie touch sonoelastography for diagnosis of inflammatory pancreatic diseases. JOP. 2012;13:36–44.PubMedGoogle Scholar
  39. 39.
    Dietrich CF, Săftoiu A, Jenssen C. Real time elastography endoscopic ultrasound (RTE-EUS), a comprehensive review. Eur J Radiol. 2014;83:405–14.CrossRefPubMedGoogle Scholar
  40. 40.
    Giovannini M, Hookey LC, Bories E, et al. Endoscopic ultrasound elastography: the first step towards virtual biopsy? Preliminary results in 49 patients. Endoscopy. 2006;38:344–8.CrossRefPubMedGoogle Scholar
  41. 41.
    Mayerle J, Simon P, Dickson EJ, et al. The role of EUS guided elastography to diagnose solid pancreatic mass lesions. Pancreas. 2010;39:1334.Google Scholar
  42. 42.
    Itoh Y, Itoh A, Kawashima H, et al. Quantitative analysis of diagnosing pancreatic fibrosis using EUS-elastography (comparison with surgical specimens). J Gastroenterol. 2014;49:1183–92.CrossRefPubMedGoogle Scholar
  43. 43.
    Janssen J, Papavassiliou I. Effect of aging and diffuse chronic pancreatitis on pancreas elasticity evaluated using semiquantitative EUS elastography. Ultraschall Med. 2014;35:253–8.Google Scholar
  44. 44.
    Saftoiu A, Vilman P, Gorunescu F, et al. Neural network analysis of dynamic sequences of EUS elastography used for the differential diagnosis of chronic pancreatitis and pancreatic cancer. Gastrointest Endosc. 2008;68:1086–94.CrossRefPubMedGoogle Scholar
  45. 45.
    Săftoiu A, Iordache S, Gheonea DI, et al. Combined contrast-enhanced power Doppler and real-time sonoelastography performed durind EUS, used in the differential diagnosis of focal pancreatic masses (with videos). Gastrointest Endosc. 2010;72:739–747.Google Scholar
  46. 46.
    Deprez PH. EUS elastography: is it replacing or supplementing tissue acquisition? Gastrointest Endosc. 2013;77:590–2.CrossRefPubMedGoogle Scholar
  47. 47.
    Dietrich CF, Hirche TO, Ott M, Ignee A. Real-time tissue elastography in the diagnosis of autoimmune pancreatitis. Endoscopy. 2009;41:718–20.CrossRefPubMedGoogle Scholar
  48. 48.
    Giovannini M, Thomas B, Erwan B, et al. Endoscopic ultrasound elastography for evaluation of lymph nodes and pancreatic masses: a multicenter study. World J Gastroenterol. 2009;15:1587–93.CrossRefPubMedCentralPubMedGoogle Scholar
  49. 49.
    Iglesias-Garcia J, Domínguez-Muñoz JE, Castiñeira-Alvariño M, et al. Quantitative elastography associated with endoscopic ultrasound for the diagnosis of chronic pancreatitis. Endoscopy. 2013;45:781–8.CrossRefPubMedGoogle Scholar
  50. 50.
    Hirche TO, Ingee A, Barreiros AP, et al. Indications and limitations of endoscopic ultrasound elastography for evaluation of focal pancreatic lesions. Endoscopy. 2008;40:910–7.CrossRefPubMedGoogle Scholar
  51. 51.
    Janssen C, Dietrich CF. Endoscopic ultrasound-guided fine-needle aspiration biopsy and trucut biopsy in gastroenterology—an overview. Best Pract Res Clin Gastroenterol. 2009;23:743–59.CrossRefGoogle Scholar
  52. 52.
    Abe Y, Irisawa A, Shibukawa G, et al. Does hyperechoic findings on B-mode EUS reflect fibrous changes in patient with chronic pancreatitis, true of fake? Evaluation using EUS elastography. Gastrointest Endosc. 2013;77:AB424.Google Scholar
  53. 53.
    Kawada N, Tanaka S, Uehara H, et al. Potential use of point shear wave elastography for the pancreas: a single center prospective study. Eur J Radiol. 2014;83:620–4.CrossRefPubMedGoogle Scholar
  54. 54.
    Herman BA, Harris GR. Models and regulatory considerations for transient temperature rise during diagnostic ultrasound pulses. Ultrasound Med Biol. 2002;28:1217–24.CrossRefPubMedGoogle Scholar
  55. 55.
    Dalecki D, Raeman CH, Child SZ, et al. The influence of contrast agents on hemorrhage produced by lithotripter fields. Ultrasound Med Biol. 1997;23:1435–9.CrossRefPubMedGoogle Scholar
  56. 56.
    Barnett SB, Duck F, Ziskin M. Recommendations on the safe use of ultrasound contrast agents. Ultrasound Med Biol. 2007;33:173–4.CrossRefPubMedGoogle Scholar
  57. 57.
    Dalecki Diane, Raeman Carol H, Child Sally Z, Penney David P, Carstensen Edwin L. Remnants of Albunex nucleate acoustic cavitation. Ultrasound Med Biol. 1997;23:1405–12.CrossRefPubMedGoogle Scholar
  58. 58.
    Yashima Y, Sasahira N, Isayama H, et al. Acoustic radiation force impulse elastography for noninvasive assessment of chronic pancreatitis. J Gastroenterol. 2012;47:427–32.CrossRefPubMedGoogle Scholar
  59. 59.
    Friedrich-Rust M, Schlueter N, Smaczny C, et al. Non-invasive measurement of liver and pancreas fibrosis in patients with cystic fibrosis. J Cyst Fibros. 2013;12:431–9.CrossRefPubMedGoogle Scholar
  60. 60.
    D’Onofrio M, Crosara S, Canestrini S, et al. Virtual analysis of pancreatic cystic lesion fluid content by ultrasound acoustic radiation force impulse quantification. J Ultrasound Med. 2013;32:647–51.PubMedGoogle Scholar
  61. 61.
    Goertz RS, Amann K, Heide R, et al. An abdominal and thyroid status with Acoustic Radiation Force Impulse Elastometry—a feasibility study: acoustic Radiation Force Impulse Elastometry of human organs. Eur J Radiol. 2011;80:e226–30.CrossRefPubMedGoogle Scholar
  62. 62.
    Sporea I, Bota S, Peck-Radosavljevic M, et al. Acoustic Radiation Force Impulse elastography for fibrosis evaluation in patients with chronic hepatitis C: an international multicenter study. Eur J Radiol. 2012;81:4112–8.CrossRefPubMedGoogle Scholar
  63. 63.
    Tomita Y, Azuma K, Nonaka Y, et al. Pancreatic fatty degeneration and fibrosis as predisposing factors for development of pancreatic ductal adenocarcinoma. Pancreas. 2014 (Epub ahead of print).Google Scholar
  64. 64.
    Arda K, Ciledag N, Aktas E, et al. Quantitative assessment of normal soft-tissue elasticity using shear-wave ultrasound elastography. AJR Am J Roentgenol. 2011;197:532–6.CrossRefPubMedGoogle Scholar

Copyright information

© The Japan Society of Ultrasonics in Medicine 2014

Authors and Affiliations

  • Yoshiki Hirooka
    • 1
    Email author
  • Takamichi Kuwahara
    • 2
  • Atsushi Irisawa
    • 3
  • Fumihide Itokawa
    • 4
  • Hiroki Uchida
    • 5
  • Naoki Sasahira
    • 6
  • Natsuko Kawada
    • 7
  • Yuya Itoh
    • 8
  • Tsuyoshi Shiina
    • 9
  1. 1.Department of EndoscopyNagoya University HospitalNagoyaJapan
  2. 2.Department of Gastroenterology and HepatologyNagoya University Graduate School of MedicineNagoyaJapan
  3. 3.Department of GastroenterologyFukushima Medical University Aizu Medical CenterAizuJapan
  4. 4.Department of Gastroenterology and HepatologyTokyo Medical UniversityTokyoJapan
  5. 5.Department of GastroenterologyOkazaki City HospitalOkazakiJapan
  6. 6.Department of GastroenterologyJapan Community Health care Organization Tokyo Takanawa HospitalTokyoJapan
  7. 7.Department of HepatopancreatobiliaryKanazawa Medical UniversityIshikawaJapan
  8. 8.Department of GastroenterologyToyota Kosei HospitalToyotaJapan
  9. 9.Department of Human Health Sciences, Graduate School of MedicineKyoto UniversityKyotoJapan

Personalised recommendations