Advertisement

EcoHealth

pp 1–16 | Cite as

Mercury in Populations of River Dolphins of the Amazon and Orinoco Basins

  • F. Mosquera-GuerraEmail author
  • F. Trujillo
  • D. Parks
  • M. Oliveira-da-Costa
  • P. A. Van Damme
  • A. Echeverría
  • N. Franco
  • J. D. Carvajal-Castro
  • H. Mantilla-Meluk
  • M. Marmontel
  • D. Armenteras-Pascual
Original Contribution

Abstract

In the Amazon and Orinoco basins, mercury has been released from artisanal and industrial gold mining since the Colonial time, as well as a result of deforestation and burning of primary forest, that release natural deposits of methyl mercury, affecting the local aquatic vertebrate fauna. This study reports the presence of mercury in river dolphins’ genera Inia and Sotalia. Mercury concentrations were analysed in muscle tissue samples collected from 46 individuals at the Arauca and Orinoco Rivers (Colombia), the Amazon River (Colombia), a tributary of the Itenez River (Bolivia) and from the Tapajos River (Brazil). Ranges of total mercury (Hg) concentration in muscle tissue of the four different taxa sampled were: I. geoffrensis humboldtiana 0.003–3.99 mg kg−1 ww (n = 21, Me = 0.4), I. g. geoffrensis 0.1–2.6 mg kg−1 ww (n = 15, Me = 0.55), I. boliviensis 0.03–0.4 mg kg−1 ww (n = 8, Me = 0.1) and S. fluviatilis 0.1–0.87 mg kg−1 ww (n = 2, Me = 0.5). The highest Hg concentration in our study was obtained at the Orinoco basin, recorded from a juvenile male of I. g. humboldtiana (3.99 mg kg−1 ww). At the Amazon basin, higher concentrations of mercury were recorded in the Tapajos River (Brazil) from an adult male of I. g. geoffrensis (2.6 mg kg−1 ww) and the Amazon River from an adult female of S. fluviatilis (0.87 mg kg−1 ww). Our data support the presence of total Hg in river dolphins distributed across the evaluated basins, evidencing the role of these cetaceans as sentinel species and bioindicators of the presence of this heavy metal in natural aquatic environments.

Keywords

Amazon Bioindication Gold mining Mercury contamination Orinoco River dolphins 

Notes

Acknowledgements

This research was conducted as part of the South America River Dolphins Conservation Program, sponsored by the Whitley Fund for Nature, the Foundation Segré, and Colciencias (National Doctorate Scholarship 785). This program is part of the strategic plan of the South American River Dolphins Initiative (SARDI), supported by WWF in Brazil, Colombia, Peru, Ecuador and Bolivia. Special gratitude to S. Usma, D. Amorocho, D. Willems, K. Berg, L. Sainz, J. Rivas, J. L. Mena, J. Surkin, and M. Wulms from the WWF network. The authors would also like to express their gratitude to the fishing communities and the local and national authorities who collected stranded animals and supported the capture of river dolphins in the framework of the satellite tracking program of river dolphins in the Amazon and Orinoco River basins.

References

  1. Aguilar A, Borrel A, Pastor, T (1999) Biological factors affecting variability of persistent pollutant levels in cetaceans. Journal Cetacean Research Management 1:83–116Google Scholar
  2. Amorim MIM, Mergler D, Bahia MO, Dubeau H, Miranda D, Lebel J, Burbano RR, Lucotte M (2000) Cytogenetic damage related to low-levels of methylmercury contamination in the Brazilian Amazon. Anais da Academia Brasileira de Ciências 72: 497–507;  https://doi.org/10.1590/s0001-37652000000400004 [Online December 15, 2000]PubMedCrossRefPubMedCentralGoogle Scholar
  3. Anderson EP, Jenkins CN, Heilpern S, Maldonado-Ocampo JA, Carvajal-Vallejos FM, Encalada AC, Rivadeneira JF, Hidalgo M, Cañas CM, Ortega H, Salcedo N, Maldonado M (2018) Fragmentation of Andes-to-Amazon connectivity by hydropower dams. Sci. Adv. 4 (1), eaao1642.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Artaxo P, Calixto de Campos R, Fernandes T, Martins JV, Xiao Z, Lindqvist O, Fernández-Jiménez MT, Maenhaut W (2000) Large scale mercury and trace element measurements in the Amazon basin. Atmospheric Environment 34: 4085–4096;  https://doi.org/10.1016/s1352-2310(00)00106-0 [Online January 1, 2000]CrossRefGoogle Scholar
  5. Augier H, Park WK, Ronneau C (1993) Mercury Contamination of the Striped Dolphin Stenella coeruleoalba Meyen from the French Mediterranean Coast. Marine Pollution Bulletin 26:306–311;  https://doi.org/10.1016/0025-326x(93)90572-2 [Online June 1, 1993]CrossRefGoogle Scholar
  6. Aula I, Braunschweiler H, Leino T, Malin I, Porvari P, Hatanaka T, Lodenius M, Juras A (1994) Levels of mercury in the Tucuruí Reservoir and its surrounding area in Pará, Brazil. In: Mercury Pollution: Integration and Synthesis, Watras CJ, Huckabee JW (Editors.), Boca Raton, Lewis Publishers, pp. 21–40Google Scholar
  7. Bahía-Oliveira M, Corvelo CC, Mergler D, Burbano RR, Lima PDL, Cardoso PC, Lucotte M, Amorim IM (2004) Environmental biomonitoring using cytogenetic endpoints in a population exposed to mercury in Brazilian Amazon. Environmental and Molecular Mutagenesis 44:346–349;  https://doi.org/10.1002/em.20054 [Online October 8, 2004]
  8. Barbosa CA, García AM, De Souza JR (1997) Mercury contamination in hair of riverine populations of Apiacás Reserve in the Brazilian Amazon. Water, Air, and Soil Pollution 97(1–2): 1–8;  https://doi.org/10.1023/a:1018336820227 [Online June 1, 1997]CrossRefGoogle Scholar
  9. Barbosa AC, Dorea JG. (1998) Indices of mercury contamination during breast feeding in the Amazon Basin. Environmental Toxicology and Pharmacology 6. 71–79;  https://doi.org/10.1016/s1382-6689(98)00031-3 [Online October 1, 1998]PubMedCrossRefPubMedCentralGoogle Scholar
  10. Basu N, Scheuhammer A, Grochowina N, Klenavic K, Evans O’Brien M, Chan HM (2005) Effects of mercury on neurochemical receptors in wild river otters (Lontra canadensis). Environmental Science and Technology 39: 3585–3591;  https://doi.org/10.1021/es0483746 [Online March 22, 2005]CrossRefGoogle Scholar
  11. Best RC and da Silva VMF (1989) Amazon River dolphin, boto Inia geoffrensis (de Blainville, 1817). In: Handbook of marine mammals, Vol. 4: River dolphins and the larger toothed whales, Ridgway SH and Harrison R (editors), London: Academic Press, pp 1–24Google Scholar
  12. Boas-Villas RC (1997) The mercury problem in the Amazon due to gold extraction. Journal of Geochemical Exploration 58: 217–222;  https://doi.org/10.1016/s0375-6742(96)00075-1 [Online April 1997]CrossRefGoogle Scholar
  13. Bossart GD (2011) Marine Mammals as Sentinel Species for Oceans and Human Health. Veterinary Pathology 48(3) 676–690;  https://doi.org/10.1177/0300985810388525 [Online December 15, 2010]PubMedCrossRefPubMedCentralGoogle Scholar
  14. Caballero S, Trujillo F, Vianna JA, Barrios-Garrido H, Montiel MG, Beltran-Pedreros S, Marmontel M, Santos MCO, Rossi-Santos MR, Santos FR, Baker CS (2007) Taxonomic status of the genus Sotalia: species level ranking for ‘tucuxi’ (Sotalia fluviatilis) and ‘costero’ (Sotalia guianensis) dolphins. Marine Mammal Science 23(2): 358–386.  https://doi.org/10.1111/j.1748-7692.2007.00110.x [Online June 15, 2007]CrossRefGoogle Scholar
  15. Cardellicchio N, Decataldo A, Di Leo A, Giandomenico S (2002) Trace elements in organs and tissues of striped dolphins (Stenella coeruleoalba) from the Mediterranean Sea (Southern Italy). Chemosphere 49:85–90;  https://doi.org/10.1016/s0045-6535(02)00170-4 [Online October 01, 2002]PubMedCrossRefPubMedCentralGoogle Scholar
  16. Carvalho CEV, Di Beneditto APM, Souza CMG, Ramos RMA, Resende CE (2008) Heavy metal distribution in two cetacean species from Rio de Janeiro State, south-eastern Brazil. J Mar Biol Assoc UK 88:1117;  https://doi.org/10.1017/s0025315408000325 [Online August 01, 2008]CrossRefGoogle Scholar
  17. Cid de Souza TM, Bidone ED (1994) Estimativa do consume global de mercúrio nos garimpos do estado do Pará, 1980–1993. In: 38o Congresso Brasilero de Geologia, Camboriú, SC, pp 32–33Google Scholar
  18. Da Silva VMF (1994) Aspects of the biology of the Amazonian dolphins Genus Inia and Sotalia fluviatilis. Ph.D. thesis, University of Cambridge, Cambridge, U.K, pp 327Google Scholar
  19. Da Silva VMF (2009) Amazon River Dolphin (Inia geoffrensis). In: Encyclopedia of Marine Mammals, Perrin WF, Wursig B, Thewissen JGM (Editors), London, UK: Academic Press, pp 26-28CrossRefGoogle Scholar
  20. Da Silva VMF, Best RC (1994) Tucuxi Sotalia fluviatilis (Gervais, 1853). In: Handbook of marine mammals, Volume 5 The first book of dolphins, Ridgway SH, Harrison R (editors) London, UK: Academic Press, pp 43–69Google Scholar
  21. Da Silva V, Trujillo F, Martin A, Zerbini AN, Crespo E, Aliaga-Rossel E, Reeves R (2018) Inia geoffrensis. The IUCN Red List of Threatened Species 2018: e.T10831A50358152.  https://doi.org/10.2305/IUCN.UK.2018-2.RLTS.T10831A50358152.en [Online Marzo 21, 2018]
  22. Dias Fonseca FR, Malmb O, Waldemarin HF (2005) Mercury levels in tissues of Giant otters (Pteronura brasiliensis) from the Rio Negro, Pantanal, Brazil. Environmental Research 98: 368–371;  https://doi.org/10.1016/j.envres.2004.11.008 [Online January 21, 2005]PubMedCrossRefPubMedCentralGoogle Scholar
  23. Dorea JG, Souza JR, Rodrigues P, Ferrari I, Barbosa AC (2005) Hair mercury (signature of fish consumption) and cardiovascular risk in Munduruku and Kayabi Indians of Amazonia. Environmental Research 97:209–19;  https://doi.org/10.1016/j.envres.2004.04.007 [Online February 01, 2005]PubMedCrossRefPubMedCentralGoogle Scholar
  24. Dos Santos LSN, Müller RCS, Sarkis JES, Alves CN, Brabo ES, Santos EO, Bentes MHS (2000) Evaluation of total mercury concentrations in fish consumed in the municipality of Itaituba, Tapajós River basin, Pará, Brazil. Science of the Total Environment 261: 1–8;  https://doi.org/10.1016/s0048-9697(00)00590-8 [Online October 01, 2000]PubMedCrossRefPubMedCentralGoogle Scholar
  25. Eaton AD, Clesceri LS, Greenberg AE, Franson MAH (1998) Standard methods for the examination of water and wastewater. 20th ed. Washington, DC: American Public Health Association, American Water Works Association and Water Environment Federation.Google Scholar
  26. Evans RD, Addison EM, Villeneuve JY, MacDonald KS, Joachim DG (1998) An examination of spatial variation in mercury concentrations in otter (Lutra canadensis) in south-central Ontario. Science of the Total Environment 213: 239–245 [Online June 10, 1998]PubMedCrossRefPubMedCentralGoogle Scholar
  27. Forsberg BR, Melack JM, Dunne T, Barthem RB, Goulding M, Paiva RCD, Sorribas MV, Silva UL Jr, Weisser S (2017) The potential impact of new Andean dams on Amazon fluvial ecosystems. PLoS ONE 12(8): e0182254;  https://doi.org/10.1371/journal. pone.0182254 [Online August 23, 2017]
  28. Fujise Y, Honda K, Tatsukawa R, Mishima S (1988) Tissue distribution of heavy metal in Dall’s porpoise in the northwestern Pacific. Marine Pollution Bulletin 19: 226–230CrossRefGoogle Scholar
  29. Geraci JR and Lounsbury VJ (2003) Marine mammals ashore: a field guide for strandings. 2nd ed. National Aquarium in Baltimore, Baltimore, MD.Google Scholar
  30. Gomez-Salazar C, Coll M, Whitehead H (2012) River dolphins as indicators of ecosystem degradation in large tropical rivers. Ecological Indicators, 23.19–26;  https://doi.org/10.1016/j.ecolind.2012.02.034 [Online December 01, 2012]CrossRefGoogle Scholar
  31. Gravena W, da Silva VMF, da Silva MNF, Farias IP, Hrbek T (2015) Living between rapids: genetic structure and hybridization in botos (Cetacea: Iniidae: Inia spp.) of the Madeira River, Brazil. Biological Journal of the Linnean Society. 114, 4 -1. 764–777.  https://doi.org/10.1111/bij.12463 [Online January 22, 2015]CrossRefGoogle Scholar
  32. Guimaraes JDR, Malm O, Pfeiffer WA (1995) Simplified radiochemical technique for measurement of net mercury methylation rates in aquatic systems near gold mining areas, Amazon, Brazil. Science of the Total Environment: 151–162;  https://doi.org/10.1016/0048-9697(95)04911-8 [Online December 11, 1995]CrossRefGoogle Scholar
  33. Guimaraes JDR, Meili M, Hylander LD, De Castro e Silva E, Roulet M, Narvaez-Mauro J.B, Alves de Lemos R (2000) Mercury net methylation in five tropical flood plain regions of Brazil: high in the root zone of floating macrophyte mats but low in surface sediments and flooded soils. Science of the Total Environment. 261. 99–107;  https://doi.org/10.1016/s0048-9697(00)00628-8 [Online October 01, 2000]CrossRefGoogle Scholar
  34. Gutleb AC, Kranz A, Nechay G, Toman A (1998) Heavy metal concentrations in livers and kidneys of the ptter (Lutra lutra) from Central Europe. Bull. Environmental Contamination and Toxicology., 60: 273–279;  https://doi.org/10.1007/s001289900621 [Online February 01, 1998]PubMedCrossRefPubMedCentralGoogle Scholar
  35. Hacon S, Barrocas PRG, Vasconcellos ACS, Barcellos C, Wasserman JC, Campos RC (2009) Um panorama dos estudos sobre contaminacao por mercurio na Amazonia Legal no periodo de 1990 a 2005 avancos e lacunas. Geochimica Brasiliensis 23:029–048;  https://doi.org/10.21715/gb.v23i1.293 [Online June 15, 2009]
  36. Hrbek T, da Silva VMF, Dutra N, Gravena W, Martin AR, Farias IP (2014) A new species of river dolphin from Brazil or: how little do we know our biodiversity. PLoS ONE 9. 1. e83623;  https://doi.org/10.1371/journal.pone.0083623 [Online March 01, 1993]PubMedPubMedCentralCrossRefGoogle Scholar
  37. Ichihashi H, Tatsukawa R (1993) Heavy metals and organochlorine residues in Ganges river dolphins from India. Marine Pollution Bulletin, 26(3), 159–162;  https://doi.org/10.1016/0025-326x(93)90128-7 [Online January 22, 2014]CrossRefGoogle Scholar
  38. Kehrig HA, Malm O, Akagi H (1997) Methylmercury in hair samples from riverine groups, Amazon, Brazil. Water, Air and Soil Pollution.97: 17–29;  https://doi.org/10.1007/bf02409641 [Online June 01, 1997]CrossRefGoogle Scholar
  39. Kehrig HA, Seixas TG, Baeta A, Lailson-Brito J, Moreira I, Malm O (2004) Total mercury, methylmercury and selenium in the livers and muscle of different fishes and a marine mammal from a tropical estuary-Brazil. RMZ-Materials and Geoenvironment 51:1111–1114;  https://doi.org/10.1007/s11356-008-0038-8 [Online August 27, 2008]CrossRefGoogle Scholar
  40. Kehrig HA, Fernandes KWG, Malm O, Seixas TG, Di Beneditto APM, Souza CMM (2009) Transferência trófica de mercúrio e selênio na costa norte do Rio de Janeiro. Quim Nova 32:1822–1828.  https://doi.org/10.1590/s0100-40422009000700026 [Online January 01, 2009]CrossRefGoogle Scholar
  41. Krishna D, Virginie D, Stéphane P, Jean-Marie B (2003) Heavy metals in marine mammals. In: Toxicology of Marine Mammals, Vos JV, Bossart GD, Fournier MI, O’Shea T (Editors.), London: CRC Press, pp 135–167Google Scholar
  42. Kuiken T, Hartmann, MG (Eds) (1993) Cetacean pathology: dissection techniques and tissue sampling. European Cetacean Society Newsletter 17:1–39Google Scholar
  43. Lacerda LD (1997) Evolution of mercury contamination in Brazil. Wat Air, and Soil Pollut 97: 247–255;  https://doi.org/10.1007/bf02407463 [Online July 01, 1997]CrossRefGoogle Scholar
  44. Lacerda LD, Salomens W (1998) Mercury from Gold and Silver Mining: A Chemical Time Bomb. Springer-Verlag., International Journal of Surface Mining, Reclamation and Environment 13:2;  https://doi.org/10.1080/09208119908944205 [Online April 27, 1998]
  45. Latrubesse EM, Arima EY, Dunne T, Park E, Baker VR, d’Horta FM, Wight C, Wittmann F, Zuanon J, Baker PA, Ribas CC, Norgaard RB, Filizola N, Ansar A, Flyvbjerg B, Stevaux JC (2017) Damming the rivers of the Amazon basin. Nature 546(7658): 363–369;  https://doi.org/10.1038/nature22333 [Online June 14, 2017]PubMedPubMedCentralCrossRefGoogle Scholar
  46. Lebel J, Roulet M, Mergler D, Lucotte M, Larribe F (1997) Fish diet and mercury exposure in a riparian amazonian population. Water Air, and Soil Pollut. 97, 31–44;  https://doi.org/10.1007/bf02409642 [Online June 01, 1997]CrossRefGoogle Scholar
  47. Lopes AP, Vidal LG, Andrade-Costa ES, Schilithz PF, Barbosa LA, Bianchi I, Azevedo AF, Dorneles PR, Malm O, Lailson-Brito J (2008) Concentrações de mercúrio total em tecidos de cetáceos costeiros do estado do Espirito Santo. 8th Reunion de Trabajo de Especialistas en Mamiferos Acuaticos de America del Sur (13–17 October), Montevideo, Uruguay.Google Scholar
  48. Malm O, Castro MB, Bastos WR, Branches FJP, Branches JRD, Guaimares CE, Zufo EC, Pfeiffer WC (1995) An assessment of Hg pollution in different gold mining areas, Amazon, Brazil. Science of the Total Environment, 17:127–140;  https://doi.org/10.1016/0048-9697(95)04909-6 [Online December 01, 1995]CrossRefGoogle Scholar
  49. Malm O, Guimares JRD, Castro MB, Bastos WR, Viana JP, Pfeiffer WC (1997) Follow-up of mercury levels in fish, human hair and urine in the Madeira and Tapajós basins, Amazon, Brazil. Water Air, and Soil Pollut, 97: 45–51;  https://doi.org/10.1007/bf02409643 [Online June 01, 1997]CrossRefGoogle Scholar
  50. Marcovecchio JE, Moreno VJ, Bastida RO, Gerpe MS, Rodriguez DH (1990) Tissue distributions of heavy metals in small cetaceans from the southweatern Atlantic Ocean. Marine Poullution Bulletin 21: 299–304;  https://doi.org/10.1016/0025-326x(90)90595-y [Online June 15, 1990]CrossRefGoogle Scholar
  51. Markert B (2007) Definitions and principles for bioindication and biomonitoring of trace metals in the environment. Journal of Trace Elements in Medicine and Biology, Suppl 1:77–82;  https://doi.org/10.1016/j.jtemb.2007.09.015 [Online November 21, 2007]PubMedCrossRefPubMedCentralGoogle Scholar
  52. Martin AR, da Silva VMF (2018) Reproductive parameters of the Amazon river dolphin or boto, Inia geoffrensis (Cetacea: Iniidae); an evolutionary outlier bucks no trends, Biological Journal of the Linnean Society: 123: 666–676;  https://doi.org/10.1093/biolinnean/bly005 [Online February 21, 2018]CrossRefGoogle Scholar
  53. Martinelli LA, Ferreira JR, Forsberg BR, Victoria RL (1988) Mercury contamination in the Amazon – a gold rush consequence. Ambio: 17:252–254 [Online December 10, 1998]Google Scholar
  54. Molina CI, Gibon FM, Duprey JL, Domínguez E, Guimarães JR, Roulet M (2010) Transfer of mercury and methylmercury along macroinvertebrate food chains in a floodplain lake of the Beni River, Bolivian Amazonia. Science of the Total Environment. 408(16): 3382–3391;  https://doi.org/10.1016/j.scitotenv.2010.04.019 [Online July 15, 2010]PubMedCrossRefPubMedCentralGoogle Scholar
  55. Morel FMM, Kraepiel AML, Amyot M (1998) The chemical cycle and bioaccumulation of mercury. Annual Reviews of Ecology and Systematics 29, 543–566. Vol. 29:543–566;  https://doi.org/10.1146/annurev.ecolsys.29.1.543 [Online November 15, 1998]CrossRefGoogle Scholar
  56. Mosquera-Guerra F, Trujillo F, Díaz-Granados MC, Mantilla Meluk H (2015a) Conservación de delfines de rio (Inia geoffrensis y Sotalia fluviatilis) en los ecosistemas acuáticos de la Amazonia y Orinoco en Colombia. Momentos de Ciencia. 12 (2): 77–86 [Online July 15, 2015]Google Scholar
  57. Mosquera-Guerra F, Trujillo F, Caicedo-Herrera D, Martínez-Callejas S (2015b) Indicios de biomagnificación de Mercurio total (Hg) en las especies del género Inia (Cetartiodactyla: Iniidae) en los s Amazonas y Orinoco (Colombia). Momentos de Ciencia 12 (2): 145–149 [Online July 15, 2015]Google Scholar
  58. Mosquera-Guerra F, Trujillo F, Caicedo-Herrera D, Zoque-Cancelado J, Mantilla Meluk H (2015c) Impactos de las pesquerías de Calophysus macropterus un riesgo para la salud pública y la conservación de los delfines de río en Colombia. Momentos de Ciencia 12 (2): 88–99 [Online July 15, 2015]Google Scholar
  59. Mosquera-Guerra F, Trujillo F, Parra CA, Carvajal-Castro JD, Mantilla-Meluk H (2018a) Aspectos poblacionales y biogeográficos de la tonina o delfín de río, Inia geoffrensis humboldtiana Pilleri & Gihr, 1978 (Cetartiodactyla, Iniidae) en los ríos Guayabero y Losada, sierra de La Macarena, Meta, Colombia. Pp. 289–305. In: Lasso, CA, Morales- Betancourt MA and Escobar-Martínez, ID (Eds.). V. Biodiversidad de la sierra de La Macarena, Meta, Colombia. Parte I. Ríos Guayabero medio, bajo Losada y bajo Duda. Serie Editorial Fauna Silvestre Neotropical. Bogotá D.C., Colombia: Instituto de Investigación de Recursos Biológicos Alexander von Humboldt [Online February 25, 2019]Google Scholar
  60. Mosquera-Guerra F, Trujillo F, Danni P, Oliveira-da-Costa M, Marmontel M, Armenteras-Pascual D, Usma S, Willems D, Carvajal-Castro JD, Mantilla- Meluk H, Franco N, Amorocho D, Maldonado R, Berg K, Sainz L, Van Damme PA, Cambell E (2018b) Analysis of distribution of river dolphins (Inia and Sotalia) in protected and transformed areas in the Amazon and Orinoco basins. Scientific Committee/Meetings/SC67B| Slovenia 2018/SM.Google Scholar
  61. Mosquera-Guerra F, Trujillo F, Oliveira-da-Costa M, Marmontel M, Armenteras-Pascual D, Usma S, Willems D, Carvajal-Castro JD, Mantilla-Meluk H, Franco N, Amorocho D, Maldonado R, Berg K, Sainz L, Van Damme PA (2018c) Movements and habitat use of river dolphins (Cetartiodactyla: Iniidae) in the Amazon and Orinoco river basins, determined from satellite tagging. Scientific Committee/Meetings/SC67B| Slovenia 2018/SM.Google Scholar
  62. Moura JF, Hacon SS, Vega CM, Hauser-Davis RA, Campos RC, Siciliano S (2011) Guiana dolphins (Sotalia guianensis, Van Beneden1864) as indicator sof the bioaccumulation of total Mercury along the coast of Rio de Janeiro State, Southeastern Brazil. Bulletin of Environmental Contamination and Toxicology 88:54–59;  https://doi.org/10.1007/s00128-011-0448-z [Online October 20, 2011]PubMedCrossRefPubMedCentralGoogle Scholar
  63. Moura JF, Emin-Lima R, Hacon SS, Vega CM, Campos RC, Siciliano S (2012) Mercury Status of the Amazon Continental Shelf: Guiana Dolphins (Sotalia guianensis, Van Beneden 1864) as a Bioindicator. Bulletin of Environmental Contamination and Toxicology 89:412–418;  https://doi.org/10.1007/s00128-012-0663-2 [Online May 08, 2012]PubMedCrossRefPubMedCentralGoogle Scholar
  64. Nuñez-Avellaneda M, Agudelo Córdoba E, Gil- Manrique BD (2014) Un análisis descriptivo de la presencia de mercurio en agua, sedimento y peces de interés socioeconómico en la Amazonia Colombiana. Revista Colombia Amazónica No 7: 149–159 [Online August 15, 2012]Google Scholar
  65. O’Shea TJ (1999) Environmental contaminants and marine mammals. In: Biology of marine mammals. Reynolds JM, Rommel SA (editors). Washington DC: Smithsonian Institution Press, pp 485–564Google Scholar
  66. Palheta D, Andrew T (1995) Mercury in environmental and biological samples from a gold mining area in the Amazon region of Brazil. The Science of the Total Environmental 168: 63–69 [Online May 09, 1995]PubMedCrossRefPubMedCentralGoogle Scholar
  67. Panebianco MV, Negri MF, Botté SE, Marcovecchio JE, Cappozzo HL (2011) Metales pesados en el riñón del delfín franciscana, Pontoporia blainvillei (Cetacea: Pontoporiidae) y su relación con parámetros biológicos. Latin American Journal of Aquatic Resources. 39(3): 526–533;  https://doi.org/10.3856/vol39-issue3-fulltext-12 [Online November 01, 2011]CrossRefGoogle Scholar
  68. Passos CJS, Mergler D (2008) Human mercury exposure and adverse health effects in Amazon: a review. Cadernos de Saúde Pública 24: S503– S520PubMedCrossRefPubMedCentralGoogle Scholar
  69. Pfeiffer WC, Lacerda LD, Malm O, Souza CMM, Silveria E, Batos WR (1989) Mercury concentrations in land waters of gold-mining areas in Rodonia, Brazil. Science of the Total Environment 87/88. 233–240PubMedCrossRefPubMedCentralGoogle Scholar
  70. Porcella DB (1994) Mercury in the environment: biogeochemistry. In: Watras, C.J., Huckabee, J.W. (Editors.), Mercury Pollution- Integration and Synthesis. CRC Press, Boca Raton, FL, pp. 3–19.Google Scholar
  71. Pouilly M, Rejas D, Pérez T, Duprey JL, Molina CI, Hubas C, Guimarães JD (2013) Trophic Structure and Mercury Biomagnification in Tropical Fish Assemblages, Itenez River, Bolivia. PLoS ONE 8(5): e65054.  https://doi.org/10.1371/journal.pone.0065054 [Online May 31, 2013]PubMedPubMedCentralCrossRefGoogle Scholar
  72. R Core Team (2013) R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. URL http://www.R-project.org/.
  73. Reeves RR, Smith B, Crespo EA, Notarbartolo Di Sciara G (Eds) (2003) Dolphins, whales and porpoises. 2002–2010 Conservation Action Plan for the World’s Cetaceans. Gland, Switzerland: IUCN/SSC Cetacean Specialist Group, pp 139Google Scholar
  74. Rosas FCW, Lethi KK (1996) Nutritional and mercury content of milk of the Amazon river dolphin, Inia geoffrensis. Comparative Biochemistry and Physiology 115A(2): 117-119CrossRefGoogle Scholar
  75. Roulet M, Lucotte M, Canuel R, Rheault I, Tran S, De Freitos Gog YG, Farella N, Souza do Vale R, Amorim M (1998a) Distribution and partition of total mercury in waters of the Tapajos river basin, Brazilian Amazon. Science of the Total Environmental.  https://doi.org/10.1016/s0048-9697(98)00093-x [Online June 01, 1998]CrossRefGoogle Scholar
  76. Roulet M, Lucotte M, Farella N, Serique G, Coelho H, Sousa Passos CJ, De Jesus da Silva E, Scavone de Andrade P, Mergler D, Amorim M (1998b) Effects of recent human colonisation on the presence of mercury in Amazonian ecosystems. Water, Air and Soil Pollut 112: 297–317;  https://doi.org/10.1023/a:1005073432015 [Online June 01, 1999]CrossRefGoogle Scholar
  77. Roulet M, Lucotte M, Guimaraes JRD, Rheault I (2000) Methylmercury in the water, seston and epiphyton of an Amazonian river and floodplain, Tapajos River, Brazil. Science of the Total Environment 261: 43–59;  https://doi.org/10.1016/s0048-9697(00)00594-5 [Online October 16, 2000]PubMedCrossRefGoogle Scholar
  78. Salinas C, Cubillos JC, Gómez R, Trujillo F, Caballero S (2013) Pig in a poke (gato por liebre)’’: The ‘‘mota’’ (Calophysus macropterus) Fishery, Molecular Evidence of Commercialization in Colombia and Toxicological Analyses. EcoHealth 11(2):197–206;  https://doi.org/10.1007/s10393-013-0893-8 [Online January 14, 2014]PubMedCrossRefPubMedCentralGoogle Scholar
  79. Sarica S, Amyotb M, Harea L, Blanchfieldc P, Bodalyc RA, Hintelmannd H, Lucottee M (2005) Mercury transfer from fish carcasses to scavengers in boreal lakes: the use of stable isotopes of mercury. Environmental Pollution 134:13–22;  https://doi.org/10.1016/j.envpol.2004.07.020 [Online March 14, 2005]PubMedCrossRefPubMedCentralGoogle Scholar
  80. Scheuhammer AM, Meyer MW, Sandheinrich MB, Murray MW (2007) Effects of environmental methylmercury on the health of wild birds, mammals, and fish. Ambio 36:12–18 [Online February 06, 2007]CrossRefGoogle Scholar
  81. Shostell JM, Ruiz-García M (2010) An introduction to river dolphin species. In: Biology, Evolution and Conservation of River Dolphins,Ruiz-García M, Shostell J, New York: Nova Science Publishers, Inc.,pp 1–28Google Scholar
  82. Siciliano S, Emin-Lima NR, Costa AF, Rodrigues ALF, Magalhaes FA, Tosi CH, Garri RG, Silva CR, Silva JS (2008) Revisao do conhecimento sobre os mamiferos aquaticos da costa norte do Brasil. Arquivos do Museu Nacioncal 66: 381–401Google Scholar
  83. Siebert U, Joiris C, Holcbeek L, Benke H, Faling K, Frese K, Petzinger E (1999) Potencial relation between mercury concentrations and necropsy findings in cetaceans from German waters of the North and Baltic Seas. Marine Poullution Bulletin 38: 285–295;  https://doi.org/10.1016/s0025-326x(98)00147-7 [Online April 15, 1999]CrossRefGoogle Scholar
  84. Souza Araujo J, Giarrizzo T, Lima MO, Souza MB. (2016) Mercury and methyl mercury in fishes from Bacajá river (Brazilian Amazon): evidence for bioaccumulation and biomagnification. Journal of Fish Biology 89 (1): 249–263;  https://doi.org/10.1111/jfb.13027 [Online July 01, 2016]PubMedCrossRefPubMedCentralGoogle Scholar
  85. Trujillo, F (2000) Habitat use and social behaviour of the freshwater dolphin Inia geoffrensis (de Blainville 1817) in the Amazon and Orinoco basins. Ph.D. Thesis. Aberdeen University. Scotland. Pp 157Google Scholar
  86. Ullrich SM, Tanton TW, Abdrashitova SA (2001) Mercury in the aquatic environment: a review of factors affecting methylation. Critical Reviews of Environmental Sciences and Technology 31, 241–293.  https://doi.org/10.1080/20016491089226 [Online June 03, 2005]CrossRefGoogle Scholar
  87. United Nations Environment Programme/Regional Ofce for Latin America and the Caribbean (UNEP/ROLAC) (2014) The Minamata Convention on Mercury and its implementation in the Latin America and Caribbean region. Montevideo, Uruguay.Google Scholar
  88. Veiga M, Meech JA, Onate N (1994) Mercury pollution from deforestation. Nature 368: 816–817;  https://doi.org/10.1038/368816a0 [Online April 28, 1994]PubMedCrossRefPubMedCentralGoogle Scholar
  89. Veiga MM (1997) Introducing new technologies for abatement of global mercury pollution in Latin America. Rio de Janeiro, Brazil: UNIDO/UBC/CETEM/CNPq, pp 1–94Google Scholar
  90. Veiga MM, Hilton JJ, Lilly C (1999) Mercury in the Amazon: A comprehensive review with special emphasis on bioaccumulation and bioindicadores, In: Proceeding of the National Institute for Minamata Disease Forum, Minamata, Japan, pp 19–39Google Scholar
  91. Venturieri R, Oliveira-da-Costa M, Gama C, Jaster CB (2017) Mercury Contamination within Protected Areas in the Brazilian Northern Amazon-Amapá State. American Journal of Environmental Sciences 13 (1): 11–21;  https://doi.org/10.3844/ajessp.2017.11.21 [Online November 21, 2018]CrossRefGoogle Scholar
  92. Villas Bôas RC (1997) The mercury problem in the Amazon due to gold extraction. Journal of Geochemical Exploration 58:217–22.  https://doi.org/10.1016/s0375-6742(96)00075-1 [Online April 01, 1997]CrossRefGoogle Scholar
  93. WCS (2017) Available: http://aguasamazonicas.org/la-iniciativa/ [accessed October 21, 2018]
  94. Wei-Wei D, Ying X, Ding W, Yu-Jiang H (2006) Mercury concentrations in Yangtze Finless Porpoises (Neophocaena phocaenoides asiaeorientalis) from eastern Dongting Lake, China. Fresenius Environmental Bulletin 15(5): 446-453Google Scholar
  95. Wren CD (1985) Probable case of mercury poisoning in a wild otter, Lutra canadensis, in northwestern Ontario. Canada. Field-Naturalist 99: 112-114Google Scholar
  96. Wren CD (1986) A review of metal accumulation and toxicity in wild mammals: I. Mercury. Environ. Res 40: 210–244.  https://doi.org/10.1016/s0013-9351(86)80098-6 [Online June 01, 1986]PubMedCrossRefPubMedCentralGoogle Scholar
  97. Yang J (2001) Trace elements in Dall’s porpoise. Phocoenoides dalli, off the Sanriku coast of Japan, Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 41–42Google Scholar
  98. Zhang HC, Zhou R, Zhou KY, Kamiya S (1996) The research of heavy metals in Neophocaena phocaenoides from Bohai Sea. China Enviromental Science 16(2):107-112Google Scholar
  99. Zhou R, Zhou KY, Kamiya S (1993) Mercury levels in liver, kidney and muscle in Neophocaena phocaenoides from Yellow Sea. Marine Enveriomental Science 12(1): 14-18Google Scholar

Copyright information

© EcoHealth Alliance 2019

Authors and Affiliations

  • F. Mosquera-Guerra
    • 1
    • 2
    Email author
  • F. Trujillo
    • 1
  • D. Parks
    • 3
  • M. Oliveira-da-Costa
    • 4
  • P. A. Van Damme
    • 5
  • A. Echeverría
    • 5
  • N. Franco
    • 1
  • J. D. Carvajal-Castro
    • 6
  • H. Mantilla-Meluk
    • 7
  • M. Marmontel
    • 8
  • D. Armenteras-Pascual
    • 2
  1. 1.Fundación OmachaBogotáColombia
  2. 2.Grupo de Ecología del Paisaje y Modelación de Ecosistemas-ECOLMOD, Departamento de Biología, Facultad de CienciasUniversidad Nacional de ColombiaBogotáColombia
  3. 3.Whitley Fund for NatureLondonUK
  4. 4.WWF-BrasilBrasíliaBrazil
  5. 5.FaunaguaCochabambaBolivia
  6. 6.Instituto de Investigación de Recursos Biológicos Alexander von HumboldtBogotáColombia
  7. 7.Programa de BiologíaUniversidad del QuindíoArmeniaColombia
  8. 8.Instituto Mamirauá de Desenvolvimento SustentávelTeféBrazil

Personalised recommendations