, Volume 16, Issue 3, pp 420–428 | Cite as

Limited Exchange of Salmonella Among Domestic Pigs and Wild Boars in Italy

  • Silvia BonardiEmail author
  • Luca Bolzoni
  • Renato Giulio Zanoni
  • Marina Morganti
  • Margherita Corradi
  • Stefano Gilioli
  • Stefano Pongolini
Original Contribution


The study assessed Salmonella carriage in wild boars (Sus scrofa) and compared their isolates with those recovered from the domestic swine population of the same area of northern Italy (Emilia-Romagna), characterized by intensive pig farming and rather high density of wild boars. A total of 189 wild boars hunted during twelve months (2017–2018) were tested for Salmonella in mesenteric lymph nodes (MLN) and faecal samples. Antimicrobial resistance of recovered strains was tested against 14 antimicrobials. Salmonella was detected in 33/189 wild boars (17.5%), specifically from 30/189 MLN (15.9%) and 6/189 faecal samples (3.2%). Three animals were positive in both samples. Thirteen Salmonella serovars were identified, i.e. Typhimurium (the most common), Bovismorbificans, Coeln, Derby, Enteritidis, Gaminara, Hessarek, Houtenae IV, Kottbus, Napoli, Stanleyville, Thompson and Veneziana. Salmonella carriage was higher in warm than in cold months (P = 0.0013). Pregnancy status was never associated with Salmonella carriage, with significant difference in the recovery of the pathogen between non-pregnant and pregnant females (P = 0.003). Only one resistance pattern to streptomycin and tetracycline was found in 15 isolates (41.7%) belonging to Typhimurium (14/14; 100%) and Kottbus (1/3; 33.3%) serovars. Overlap with isolates from farmed pigs was limited at serotype level (Typhimurium, Derby, Enteritis, Bovismorbificans, Kottbus) and absent at PFGE level, and also antimicrobial resistance patterns were substantially different. This evidence indicates a substantial segregation of the two animal populations with regard to infectious contacts, possibly suggesting that biosecurity measures in place at industrial farm level limit the exchange of Salmonella.


Salmonella enterica Wild boars Pigs Antimicrobial resistance PFGE types 



The authors gratefully acknowledge Dr. Gisella Pizzin and Mrs. Ida Poli of the University of Parma for valuable technical assistance.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Human and Animals Rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

For the retrospective study concerning Salmonella isolates from pigs, formal consent is not required.


  1. Baudart J, Lemarchand K, Brisabois A, Lebaron P (2000) Diversity of Salmonella Strains Isolated from the Aquatic Environment as Determined by Serotyping and Amplification of the Ribosomal DNA Spacer Regions. Applied and Environmental Microbiology 66: 1544–1552.CrossRefGoogle Scholar
  2. Bonardi S, Bassi L, Brindani F, D’Incau M, Barco L. Carra E, Pongolini S (2013) Prevalence, characterization and antimicrobial susceptibility of Salmonella enterica and Yersinia enterocolitica in pigs at slaughter in Italy. International Journal of Food Microbiology 163: 248-257; CrossRefPubMedGoogle Scholar
  3. Bonardi S, Bruini I, Alpigiani I, Vismarra A, Barilli E, Brindani F, Morganti M, Bellotti P, Bolzoni L, Pongolini S (2016) Influence of pigskin on Salmonella contamination of pig carcasses and cutting lines in an Italian slaughterhouse. Italian Journal of Food Safety 5: 65-68; CrossRefGoogle Scholar
  4. Botti V, Navillod FV, Domenis L, Orusa R, Pepe E, Robetto S, Guidetti C (2013) Salmonella spp. and antibiotic-resistant strains in wild mammals and birds in north-western Italy from 2002 to 2010. Veterinaria Italiana 49: 195-202. CrossRefPubMedGoogle Scholar
  5. Carnevali L, Pedrotti L, Riga F, Toso S (2009) Ungulates in Italy: Status, distribution, abundance, management and hunting of Ungulate populations in Italy. Biologia e Conservazione della Fauna 117:1-168Google Scholar
  6. Chiari M, Zanoni M, Tagliabue S, Lavazza A, Alborali LG (2013) Salmonella serotypes in wild boars (Sus scrofa) hunted in northern Italy. Acta Veterinaria Scandinavica 55: 42. CrossRefPubMedPubMedCentralGoogle Scholar
  7. Clinical and Laboratory Standards Institute (CLSI) (2018) Performance Standards for Antimicrobial Susceptibility Testing, 28th ed. CLSI supplement M100. Wayne, PAGoogle Scholar
  8. Cowled BD, Ward MP, Laffan SW, Galea F, Garner MG, MacDonald AJ, Marsh I, Muellner P, Negus K, Quasim S, Woolnough AP, Sarre SD (2012) Integrating survey and molecular approaches to better understand wildlife disease ecology. PLoS One 7: e46310. CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cummings KJ, Rodriguez-Rivera LD, Grigar MK, Rankin SC, Mesenbrink BT, Leland BR, Bodenchuk MJ (2016) Prevalence and characterization of Salmonella isolated from feral pigs throughout Texas. Zoonoses and Public Health 63: 436-441.CrossRefGoogle Scholar
  10. European Food Safety Authority (EFSA) (2014) Evaluation of possible mitigation measures to prevent introduction and spread of African swine fever virus through wild boar. EFSA Journal 12(3):3616. CrossRefGoogle Scholar
  11. European Food Safety Authority (EFSA), European Centre for Disease Prevention and Control (ECDC) (2018) The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2017. EFSA Journal 16 (12):5500. CrossRefGoogle Scholar
  12. Fenwick SG, Duignan PJ, Nicol CM, Leyland MJ, Hunter JE (2004). A comparison of Salmonella serotypes isolated from New Zealand sea lions and feral pigs on the Auckland Islands by pulsed-field gel electrophoresis. Journal of Wildlife Diseases 40: 566-570; CrossRefPubMedGoogle Scholar
  13. Fisher IST, Jourdan-Da Silva N, Hächler H, Weill F-X, Schmid H, Danan C, Kérouanton A, Lane CR, Dionisi AM, Luzzi I (2009) Human infections due to Salmonella Napoli: a multicountry, emerging enigma recognized by the Enter-net international surveillance network. Foodborne Pathogens and Disease 6: 613–619 CrossRefPubMedGoogle Scholar
  14. Funk J, Davies PR, Nichols MA. The effect of sample weight on detection of Salmonella enterica in swine feces. Journal of Veterinary Diagnostic Investigation 2000; 12: 412–418.CrossRefGoogle Scholar
  15. Gethöffer F, Sodeikat G, Pohlmeyer K (2007). Reproductive parameters of wild boar (Sus scrofa) in three different parts of Germany. European Journal of Wildlife Research 53: 287-297.CrossRefGoogle Scholar
  16. Gori M, Ebranati E, Scaltriti E, Huedo P, Ciceri G, Tanzi E, Pontello M, Zehender G, Pongolini S, Bolzoni L (2018) High-resolution diffusion pattern of human infections by Salmonella enterica serovar Napoli in Northern Italy explained through phylogeography. PLoS One 13: e0202573. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Gortázar C, Ferroglio E, Höfle U, Frölich K, Vicente J (2007) Diseases shared between wildlife and livestock: a European perspective. European Journal of Wildlife Research 53: 241-256.CrossRefGoogle Scholar
  18. Graziani C, Luzzi I, Owczarek S, Dionisi AM, Busani L (2015) Salmonella enterica Serovar Napoli Infection in Italy from 2000 to 2013: Spatial and spatio-temporal analysis of cases distribution and the effect of human and animal density on the risk of infection. PLoS ONE 10, e0142419. CrossRefPubMedPubMedCentralGoogle Scholar
  19. Keuling O, Baub E, Duscher A, Ebert C, Fischer C, Monaco A, Podgorski T, Prevot C, Ronnenberg K, Sodeikat G, Stier N, Thurfjell H (2013) Mortality rates of wild boar Sus scrofa L. in central Europe. European Journal of Wildlife Research 59: 805-814.CrossRefGoogle Scholar
  20. Krautwald-Junghanns ME, Stenkat J, Szabo I, Ortlieb F, Blindow I, Neul AK, Pees M, Schmidt V (2013) Characterization of Salmonella isolated from captive and free-living snakes in Germany. Berliner und Münchener Tierarztliche Wochenschrift 126: 209-215.PubMedGoogle Scholar
  21. Haley BJ, Cole DJ, Lipp EK (2009) Distribution, diversity and seasonality of waterborne salmonellae in a rural watershed. Applied and Environmental Microbiology 75: 1248-1255; DOI: 10.1128/AEM.01648-08CrossRefPubMedPubMedCentralGoogle Scholar
  22. Huedo P, Gori M, Zolin A, Amato E, Ciceri G, Bossi A, Pontello M (2017) Salmonella enterica rerotype Napoli is the first cause of invasive nontyphoidal salmonellosis in Lombardy, Italy (2010-2014), and belongs to Typhi subclade. Foodborne Pathogens and Disease 14: 148-151; Epub 2016 Dec 16CrossRefPubMedGoogle Scholar
  23. Hurd HS, McKean JD, Griffith RD, Rostagno MH (2004) Estimation of the Salmonella enterica prevalence in finishing swine. Epidemiology and Infection 132:127-135.CrossRefGoogle Scholar
  24. International Organization for Standardization (ISO) (2014) Microbiology of the Food Chain. Horizontal Method for the Detection, Enumeration and Serotyping of Salmonella—Part III: Guidelines for Serotyping of Salmonella spp. ISO 6579-3:2014. GenevaGoogle Scholar
  25. International Organization for Standardization (ISO) (2017) Microbiology of the Food Chain. Horizontal Method for the Detection, Enumeration and Serotyping of Salmonella—Part I: Detection of Salmonella spp. ISO 6579-1:2017. GenevaGoogle Scholar
  26. OIE (2015) OIE List of Antimicrobial Agents of Veterinary Importance. Accessed 12 May 2018
  27. Paulsen P, Smulders FJM, Hilbert F (2012) Salmonella in meat from hunted game: A Central European perspective. Food Research International 45: 609–616; CrossRefGoogle Scholar
  28. Pittiglio C, Khomenko S, Beltran-Alcrudo D (2018) Wild boar mapping using population-density statistics: From polygons to high resolution raster maps. PLoS ONE 13(5): e0193295. CrossRefPubMedPubMedCentralGoogle Scholar
  29. PulseNet (2013) One-day (24-28 h) standardized laboratory protocol for molecular subtyping of Escherichia coli O157:H7, Salmonella serotypes, Shigella sonnei, and Shigella flexneri by Pulsed Field Gel Electrophoresis (PFGE). Accessed 15 January 2018
  30. Rossi M, Delogu M, Ostanello F, Caprioli A, Zanoni RG (2007) Antibiotic resistance patterns of faecal indicator organisms and occurrence of Salmonella spp. in wild boar (Sus scrofa scrofa) in Italy. In: Proceedings of the seventh International Symposium on the Epidemiology and Control of foodborne Pathogens in Pork—Safepork 2007, Verona, pp 493–495Google Scholar
  31. Saez-Royuela C, Gomariz C, Telleria JL (1989) Age determination of European wild boar (Sus scrofa). Wildlife Society Bullettin 17: 326–329.Google Scholar
  32. Sannö A, Aspán A, Hestvik G, Jacobson M (2014) Presence of Salmonella spp., Yersinia enterocolitica, Yersinia pseudotuberculosis and Escherichia coli O157:H7 in wild boars. Epidemiology and Infection 142: 2542-2547. CrossRefPubMedGoogle Scholar
  33. Sannö A, Rosendal T, Aspán A, Backhans A, Jacobson M (2018) Distribution of enteropathogenic Yersinia spp and Salmonella spp in the Swedish wild boar population, and assessment of risk factors that may affect their prevalence. Acta Veterinaria Scandinavica 60: 40. 10.1186/s13028-018-0395-3.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Sasaki Y, Goshima T, Mori T, Murakami M, Haruna M, Ito K, Yamada Y (2013) Prevalence and antimicrobial susceptibility of foodborne bacteria in wild boars (Sus scrofa) and wild deer (Cervus nippon) in Japan. Foodborne Pathogens and Disease 10: 985-991; CrossRefPubMedGoogle Scholar
  35. Singer N, Weissman Y, Yom-Tov Y, Marder U (1977) Isolation of Salmonella hessarek from starlings (Sturnus vulgaris). Avian Diseases 21:117-119.CrossRefGoogle Scholar
  36. Thakur S, Sandfoss M, Kennedy-Stoskopf S, DePerno CS (2011) Detection of Clostridium difficile and Salmonella in feral swine population in North Carolina. Journal of Wildlife Diseases 47: 774-776; CrossRefPubMedGoogle Scholar
  37. Thomas JL, Slawson RM, Taylor WD (2013) Salmonella serotype diversity and seasonality in urban and rural streams. Journal of Applied Microbiology 114: 907-922; CrossRefPubMedGoogle Scholar
  38. Velarde R, Porrero MC, Serrano E, Marco I, García M, Téllez S, Domínguez L, Aymí R, Lavín S (2012). Septicemic salmonellosis caused by Salmonella Hessarek in wintering and migrating Song Thrushes (Turdus philomelos) in Spain. Journal of Wildlife Diseases 48:113-121.CrossRefGoogle Scholar
  39. Venables WN, Ripley BD (2002) Modern Applied Statistics with S. Springer, New York, USA.CrossRefGoogle Scholar
  40. Vieira-Pinto M, Morais L, Caleja C, Themudo P, Torres C, Igrejas G, Poeta P, Martins C (2011) Salmonella sp. in game (Sus scrofa and Oryctolagus cuniculus). Foodborne Pathogens and Disease 8: 739-740; CrossRefPubMedGoogle Scholar
  41. Wacheck S, Fredriksson-Ahomaa M, König M, Stolle A, Stephan R (2010) Wild boars as an important reservoir for foodborne pathogens. Foodborne Pathogens and Disease 7: 307-312; CrossRefPubMedGoogle Scholar
  42. Ward MP, Cowled B., Galea F, Graeme Garner M, Laffan SW, Marsh I, Negus K, Sarre SD, Woolnough AP (2013) Salmonella infection in a remote, isolated wild pig population. Veterinary Microbiology 162: 921-929.CrossRefGoogle Scholar
  43. Zottola T, Montagnaro S, Magnapera C, Sasso S, De Martino L, Bragagnolo A, D’Amici L, Condoleo R, Pisanelli G, Iovane G, Paganini U (2013) Prevalence and antimicrobial susceptibility of Salmonella in European wild boars (Sus scrofa); Latium Region-Italy. Comparative Immunology, Microbiology and Infectious Diseases 36: 161– 168; CrossRefPubMedGoogle Scholar

Copyright information

© EcoHealth Alliance 2019

Authors and Affiliations

  • Silvia Bonardi
    • 1
    Email author
  • Luca Bolzoni
    • 2
  • Renato Giulio Zanoni
    • 3
  • Marina Morganti
    • 2
  • Margherita Corradi
    • 4
  • Stefano Gilioli
    • 4
  • Stefano Pongolini
    • 2
  1. 1.Unit of Food Inspection, Department of Veterinary ScienceUniversity of ParmaParmaItaly
  2. 2.Risk Analysis and Genomic Epidemiology UnitIstituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna, Sezione di ParmaParmaItaly
  3. 3.Department of Veterinary Medical SciencesAlma Mater Studiorum - University of BolognaOzzano EmiliaItaly
  4. 4.Management Body for Parks and Biodiversity “Emilia Occidentale”Sala BaganzaItaly

Personalised recommendations