pp 1–17 | Cite as

The Role of Ecological Linkage Mechanisms in Plasmodium knowlesi Transmission and Spread

  • Gael Davidson
  • Tock H. ChuaEmail author
  • Angus Cook
  • Peter Speldewinde
  • Philip Weinstein


Defining the linkages between landscape change, disease ecology and human health is essential to explain and predict the emergence of Plasmodium knowlesi malaria, a zoonotic parasite residing in Southeast Asian macaques, and transmitted by species of Anopheles mosquitos. Changing patterns of land use throughout Southeast Asia, particularly deforestation, are suggested to be the primary drivers behind the recent spread of this zoonotic parasite in humans. Local ecological changes at the landscape scale appear to be increasing the risk of disease in humans by altering the dynamics of transmission between the parasite and its primary hosts. This paper will focus on the emergence of P. knowlesi in humans in Malaysian Borneo and the ecological linkage mechanisms suggested to be playing an important role.


Plasmodium knowlesi Ecological linkage mechanisms Deforestation Biodiversity Restoration Borneo 



With gratitude, we would like to thank David Alloysius, the manager at the Inikea field site in Sabah, for his time and patience in showing us potential sampling sites last November. Also, thanks must go to the Swedish Research Council and the Swedish University of Agricultural Science for providing funding for this ongoing research within the wider project ‘Balancing production and ecosystem services from degraded tropical rainforests to aid the transition to a more sustainable economy’. The University of Western Australia has provided the opportunity to investigate the effects of forest restoration on human health as a PhD project for GD who also expresses her gratitude to all the supervisors overseeing this research for their time and efforts.


  1. AFRANE, Y. A., GITHEKO, A. K. & YAN, G. 2012. The ecology of Anopheles mosquitoes under climate change: case studies from the effects of deforestation in East African highlands. Annals of the New York Academy of Sciences, 1249, 204-210.CrossRefPubMedPubMedCentralGoogle Scholar
  2. AFRANE, Y. A., LAWSON, B. W., GITHEKO, A. K. & YAN, G. 2005. Effects of Microclimatic Changes Caused by Land Use and Land Cover on Duration of Gonotrophic Cycles of Anopheles gambiae (Diptera: Culicidae) in Western Kenya Highlands. Journal of Medical Entomology, 42, 974-980.CrossRefPubMedGoogle Scholar
  3. AFRANE, Y. A., LITTLE, T. J., LAWSON, B. W., GITHEKO, A. K. & YAN, G. 2008. Deforestation and vectorial capacity of Anopheles gambiae Giles mosquitoes in malaria transmission, Kenya.(RESEARCH). Emerging Infectious Diseases, 14, 1533.CrossRefPubMedPubMedCentralGoogle Scholar
  4. AFRANE, Y. A., ZHOU, G., LAWSON, B. W., GITHEKO, A. K. & YAN, G. 2006. Effects of microclimatic changes caused by deforestation on the survivorship and reproductive fitness of Anopheles gambiae in western Kenya highlands. The American journal of tropical medicine and hygiene, 74, 772.CrossRefPubMedGoogle Scholar
  5. AHMED, M. & COX‐SINGH, J. 2015. Plasmodium knowlesi–an emerging pathogen. ISBT science series, 10, 134-140.CrossRefPubMedPubMedCentralGoogle Scholar
  6. AMERASINGHE, F. & ARIYASENA, T. 1990. Larval survey of surface water-breeding mosquitoes during irrigation development in the Mahaweli Project, Sri Lanka. Journal of Medical Entomology, 27, 789-802.CrossRefPubMedGoogle Scholar
  7. ARATRAKORN, S., THUNHIKORN, S. & DONALD, P. F. 2006. Changes in bird communities following conversion of lowland forest to oil palm and rubber plantations in southern Thailand. Bird conservation international, 16, 71-82.CrossRefGoogle Scholar
  8. ASHRAF, M., ZULKIFLI, R., SANUSI, R., TOHIRAN, K. A., TERHEM, R., MOSLIM, R., NORHISHAM, A. R., ASHTON-BUTT, A. & AZHAR, B. 2018. Alley-cropping system can boost arthropod biodiversity and ecosystem functions in oil palm plantations. Agriculture, Ecosystems and Environment, 260, 19-26.CrossRefGoogle Scholar
  9. AUSTIN, K., F., MEGAN, O. B. & PRIYOKTI, R. 2017. Anthropogenic forest loss and malaria prevalence: a comparative examination of the causes and disease consequences of deforestation in developing nations. AIMS Environmental Science, 4, 217-231.CrossRefGoogle Scholar
  10. AZHAR, B., SAADUN, N., PRIDEAUX, M. & LINDENMAYER, D. B. 2017. The global palm oil sector must change to save biodiversity and improve food security in the tropics. Journal of Environmental Management, 203, 457-466.CrossRefPubMedGoogle Scholar
  11. AZHAR, B., SAADUN, N., PUAN, C. L., KAMARUDIN, N., AZIZ, N., NURHIDAYU, S. & FISCHER, J. 2015. Promoting landscape heterogeneity to improve the biodiversity benefits of certified palm oil production: Evidence from Peninsular Malaysia. Global Ecology and Conservation, 3, 553-561.CrossRefGoogle Scholar
  12. BARBER, B. E., WILLIAM, T., GRIGG, M. J., MENON, J., AUBURN, S., MARFURT, J., ANSTEY, N. M. & YEO, T. W. 2013a. A Prospective Comparative Study of Knowlesi, Falciparum, and Vivax Malaria in Sabah, Malaysia: High Proportion With Severe Disease From Plasmodium Knowlesi and Plasmodium Vivax But No Mortality With Early Referral and Artesunate Therapy. Clinical Infectious Diseases, 56, 383-397.CrossRefPubMedGoogle Scholar
  13. BARBIER, E. B. 2004. Explaining agricultural land expansion and deforestation in developing countries. American Journal of Agricultural Economics, 86, 1347-1353.CrossRefGoogle Scholar
  14. BARROS, F. S. M., ARRUDA, M. E., GURGEL, H. C. & HONÓRIO, N. A. 2011. Spatial clustering and longitudinal variation of Anopheles darlingi (Diptera: Culicidae) larvae in a river of the Amazon: the importance of the forest fringe and of obstructions to flow in frontier malaria. Bulletin of Entomological Research, 101, 643-658.CrossRefPubMedGoogle Scholar
  15. BARROS, F. S. M. & HONÓRIO, N. A. 2015. Deforestation and Malaria on the Amazon Frontier: Larval Clustering of Anopheles darlingi (Diptera: Culicidae) Determines Focal Distribution of Malaria. The American journal of tropical medicine and hygiene, 93, 939.CrossRefPubMedPubMedCentralGoogle Scholar
  16. BELL, T. E. 2015. Changes in Ant Communities across a Tropical Rainforest Landscape which includes Old growth and Twice-logged areas in Sabah, Malaysia. Master of Research, Imperial College London.Google Scholar
  17. BENAVENTE, E. D., DE SESSIONS, P. F., MOON, R. W., HOLDER, A. A., BLACKMAN, M. J., ROPER, C., DRAKELEY, C. J., PAIN, A., SUTHERLAND, C. J. & HIBBERD, M. L. 2017. Analysis of nuclear and organellar genomes of Plasmodium knowlesi in humans reveals ancient population structure and recent recombination among host-specific subpopulations. PLoS genetics, 13, e1007008.CrossRefGoogle Scholar
  18. BERNARD, H., BILI, R., MATSUDA, I., HANYA, G., WEARN, O. R., WONG, A. & AHMAD, A. H. 2016. Species Richness and Distribution of Primates in Disturbed and Converted Forest Landscapes in Northern Borneo. Tropical Conservation Science, 9, 1940082916680104.CrossRefGoogle Scholar
  19. BRADSHAW, C. J., SODHI, N. S. & BROOK, B. W. 2009. Tropical turmoil: a biodiversity tragedy in progress. Frontiers in Ecology and the Environment, 7, 79-87.CrossRefGoogle Scholar
  20. BRANT, H. L., EWERS, R. M., VYTHILINGAM, I., DRAKELEY, C., BENEDICK, S. & MUMFORD, J. D. 2016. Vertical stratification of adult mosquitoes (Diptera: Culicidae) within a tropical rainforest in Sabah, Malaysia. Malaria journal, 15, 370.CrossRefPubMedPubMedCentralGoogle Scholar
  21. BROCK, P. M., FORNACE, K. M., PARMITER, M., COX, J., DRAKELEY, C. J., FERGUSON, H. M. & KAO, R. R. 2016. Plasmodium knowlesi transmission: integrating quantitative approaches from epidemiology and ecology to understand malaria as a zoonosis. Parasitology, 143, 389-400.CrossRefPubMedPubMedCentralGoogle Scholar
  22. BRODIE, J. F., GIORDANO, A. J., DICKSON, B., HEBBLEWHITE, M., BERNARD, H., MOHD‐AZLAN, J., ANDERSON, J. & AMBU, L. 2015a. Evaluating multispecies landscape connectivity in a threatened tropical mammal community. Conservation Biology, 29, 122-132.CrossRefPubMedGoogle Scholar
  23. BRODIE, J. F., GIORDANO, A. J., ZIPKIN, E. F., BERNARD, H., MOHD‐AZLAN, J. & AMBU, L. 2015b. Correlation and persistence of hunting and logging impacts on tropical rainforest mammals. Conservation Biology, 29, 110-121.CrossRefPubMedGoogle Scholar
  24. BROTCORNE, F., MASLAROV, C., WANDIA, I. N., FUENTES, A., BEUDELS‐JAMAR, R. C. & HUYNEN, M. C. 2014. The role of anthropic, ecological, and social factors in sleeping site choice by long‐tailed macaques (Macaca fascicularis). American journal of primatology, 76, 1140-1150.CrossRefPubMedGoogle Scholar
  25. Brouard O, Le Jeune AH, Leroy C, Cereghino R, Roux O, Pelozuelo L, Dejean A, Corbara B, Carrias JF, Evens T (2011) Are algae relevant to the detritus-based food web in tank-bromeliads? PLoS ONE 6: e20129.CrossRefPubMedPubMedCentralGoogle Scholar
  26. BRÜHL, C., ELTZ, T. & LINSENMAIR, K. 2003. Size does matter – effects of tropical rainforest fragmentation on the leaf litter ant community in Sabah, Malaysia. Biodiversity & Conservation, 12, 1371-1389.CrossRefGoogle Scholar
  27. BRÜHL, C. A. & ELTZ, T. 2010. Fuelling the biodiversity crisis: species loss of ground-dwelling forest ants in oil palm plantations in Sabah, Malaysia (Borneo). Biodiversity and Conservation, 19, 519-529.CrossRefGoogle Scholar
  28. BRYAN, J. E., SHEARMAN, P. L., ASNER, G. P., KNAPP, D. E., AORO, G. & LOKES, B. 2013. Extreme differences in forest degradation in Borneo: comparing practices in Sarawak, Sabah, and Brunei. PloS one, 8, e69679.CrossRefPubMedPubMedCentralGoogle Scholar
  29. BUDIHARTA, S., MEIJAARD, E., WELLS, J. A., ABRAM, N. K. & WILSON, K. A. 2016. Enhancing feasibility: Incorporating a socio-ecological systems framework into restoration planning. Environmental Science and Policy, 64, 83-92.CrossRefGoogle Scholar
  30. BURDON, F. J., MCINTOSH, A. R. & HARDING, J. S. 2013. Habitat loss drives threshold response of benthic invertebrate communities to deposited sediment in agricultural streams. Ecological Applications, 23, 1036-1047.CrossRefPubMedGoogle Scholar
  31. Burkett-Cadena ND, Vittor AY (2018) Deforestation and vector-borne disease: forest conversion favors important mosquito vectors of human pathogens. Basic and Applied Ecology 26:101–110.CrossRefGoogle Scholar
  32. CANELAS, T., CASTILLO-SALGADO, C. & RIBEIRO, H. 2016. Systematized Literature Review on Spatial Analysis of Environmental Risk Factors of Malaria Transmission. Advances in Infectious Diseases, 6, 52.CrossRefGoogle Scholar
  33. CARVALHO, K. S. & VASCONCELOS, H. L. 1999. Forest fragmentation in central Amazonia and its effects on litter-dwelling ants. Biological Conservation, 91, 151-157.CrossRefGoogle Scholar
  34. CHANG, M., HII, J., BUTTNER, P. & MANSOOR, F. 1997. Changes in abundance and behaviour of vector mosquitoes induced by land use during the development of an oil palm plantation in Sarawak. Transactions of the Royal Society of Tropical Medicine and Hygiene, 91, 382-386.CrossRefPubMedGoogle Scholar
  35. CHAVES, L. S. M., CONN, J. E., LÓPEZ, R. V. M. & SALLUM, M. A. M. 2018. Abundance of impacted forest patches less than 5 km 2 is a key driver of the incidence of malaria in Amazonian Brazil. Scientific reports, 8, 7077.CrossRefPubMedPubMedCentralGoogle Scholar
  36. CHELLAIAH, D. & YULE, C. M. 2018. Riparian buffers mitigate impacts of oil palm plantations on aquatic macroinvertebrate community structure in tropical streams of Borneo. Ecological Indicators, 95, 53-62.CrossRefGoogle Scholar
  37. CHUA, T. H., MANIN, B. O., DAIM, S., VYTHILINGAM, I. & DRAKELEY, C. 2017. Phylogenetic analysis of simian Plasmodium spp. infecting Anopheles balabacensis Baisas in Sabah, Malaysia. PLoS Neglected Tropical Diseases, 11, e0005991.CrossRefPubMedPubMedCentralGoogle Scholar
  38. CHUNG, A. Y. C., EGGLETON, P., SPEIGHT, M. R., HAMMOND, P. M. & CHEY, V. K. 2000. The diversity of beetle assemblages in different habitat types in Sabah, Malaysia. Bulletin of Entomological Research, 90, 475-496.CrossRefPubMedGoogle Scholar
  39. CIVITELLO, D. J., COHEN, J., FATIMA, H., HALSTEAD, N. T., LIRIANO, J., MCMAHON, T. A., ORTEGA, C. N., SAUER, E. L., SEHGAL, T., YOUNG, S. & ROHR, J. R. 2015. Biodiversity inhibits parasites: Broad evidence for the dilution effect. Proceedings of the National Academy of Sciences, 112, 8667-8671.CrossRefGoogle Scholar
  40. COLLINS, W. E. 2012. Plasmodium knowlesi: a malaria parasite of monkeys and humans. Annual review of entomology, 57, 107-121.CrossRefPubMedGoogle Scholar
  41. COSSET, C. C. P. & EDWARDS, D. P. 2017. The effects of restoring logged tropical forests on avian phylogenetic and functional diversity. Ecological Applications, 27, 1932-1945.CrossRefPubMedGoogle Scholar
  42. CROUZEILLES, R., CURRAN, M., FERREIRA, M. S., LINDENMAYER, D. B., GRELLE, C. E. & BENAYAS, J. M. R. 2016. A global meta-analysis on the ecological drivers of forest restoration success. Nature communications, 7, 11666.CrossRefPubMedPubMedCentralGoogle Scholar
  43. CUNNINGHAM, A. A., DASZAK, P. & WOOD, J. L. N. 2017. One Health, emerging infectious diseases and wildlife: two decades of progress? Philosophical Transactions of the Royal Society B: Biological Sciences, 372.Google Scholar
  44. CUSACK, J. 2011. Characterising small mammal responses to tropical forest loss and degradation in Northern Borneo using capture-mark-recapture methods. Department of Life Sciences, Silwood Park, Imperial College London.Google Scholar
  45. Cushman SA, Macdonald EA, Landguth EL, Malhi Y, Macdonald DW (2017) Multiple-scale prediction of forest loss risk across Borneo. Landscape Ecology 32(8):1581–1598.CrossRefGoogle Scholar
  46. Daneshvar C, Davis TM, Cox-Singh J, Rafa’ee MZ, Zakaria SK, Divis PC, Singh B (2009) Clinical and laboratory features of human Plasmodium knowlesi infection. Clinical Infectious Diseases 49(6):852-860.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Daneshvar C, William T, Davis TM (2018) Clinical features and management of Plasmodium knowlesi infections in humans. Parasitology 145(1):18-31CrossRefPubMedGoogle Scholar
  48. DEFRIES, R. S., RUDEL, T., URIARTE, M. & HANSEN, M. 2010. Deforestation driven by urban population growth and agricultural trade in the twenty-first century. Nature Geoscience, 3, 178.CrossRefGoogle Scholar
  49. DESPOMMIER, D., ELLIS, B. R. & WILCOX, B. A. 2006. The role of ecotones in emerging infectious diseases. EcoHealth, 3, 281-289.CrossRefGoogle Scholar
  50. EDWARDS, D., BACKHOUSE, A., WHEELER, C., KHEN, C. & HAMER, K. 2012. Impacts of logging and rehabilitation on invertebrate communities in tropical rainforests of northern Borneo. Journal of Insect Conservation, 16, 591-599.CrossRefGoogle Scholar
  51. EMIDI, B., KISINZA, W. N., MMBANDO, B. P., MALIMA, R. & MOSHA, F. W. 2017. Effect of physicochemical parameters on Anopheles and Culex mosquito larvae abundance in different breeding sites in a rural setting of Muheza, Tanzania. Parasites & Vectors, 10, 304.CrossRefGoogle Scholar
  52. ESTRADA-PEÑA, A., OSTFELD, R. S., PETERSON, A. T., POULIN, R. & DE LA FUENTE, J. 2014. Effects of environmental change on zoonotic disease risk: an ecological primer. Trends in Parasitology, 30, 205-214.CrossRefPubMedGoogle Scholar
  53. ESTRADA, A., GARBER, P. A., RYLANDS, A. B., ROOS, C., FERNANDEZ-DUQUE, E., DI FIORE, A., NEKARIS, K. A.-I., NIJMAN, V., HEYMANN, E. W. & LAMBERT, J. E. 2017. Impending extinction crisis of the world’s primates: Why primates matter. Science advances, 3, e1600946.CrossRefPubMedPubMedCentralGoogle Scholar
  54. FARUK, A., BELABUT, D., AHMAD, N., KNELL, R. J. & GARNER, T. W. 2013. Effects of oil‐palm plantations on diversity of tropical anurans. Conservation biology, 27, 615-624.CrossRefPubMedGoogle Scholar
  55. FITZHERBERT, E. B., STRUEBIG, M. J., MOREL, A., DANIELSEN, F., BRÜHL, C. A., DONALD, P. F. & PHALAN, B. 2008. How will oil palm expansion affect biodiversity? Trends in ecology & evolution, 23, 538-545.CrossRefGoogle Scholar
  56. Fong, I (2017) Zoonotic malaria: Plasmodium knowlesi. In: Emerging Zoonoses, Berlin: SpringerGoogle Scholar
  57. FORNACE, K. M., ABIDIN, T. R., ALEXANDER, N., BROCK, P., GRIGG, M. J., MURPHY, A., WILLIAM, T., MENON, J., DRAKELEY, C. J. & COX, J. 2016. Association between Landscape Factors and Spatial Patterns of Plasmodium knowlesi Infections in Sabah, Malaysia. Emerging Infectious Diseases, 22, 201-209.CrossRefPubMedPubMedCentralGoogle Scholar
  58. FUKUDA, D., TISEN, O. B., MOMOSE, K. & SAKAI, S. 2009. Bat diversity in the vegetation mosaic around a lowland dipterocarp forest of Borneo. Raffles Bulletin of Zoology, 57, 213-221.Google Scholar
  59. GAVEAU, D. L., SHEIL, D., SALIM, M. A., ARJASAKUSUMA, S., ANCRENAZ, M., PACHECO, P. & MEIJAARD, E. 2016. Rapid conversions and avoided deforestation: examining four decades of industrial plantation expansion in Borneo. Scientific reports, 6, 32017.CrossRefPubMedPubMedCentralGoogle Scholar
  60. GEIST, H. J. & LAMBIN, E. F. 2002. Proximate causes and underlying driving forces of tropical deforestation: Tropical forests are disappearing as the result of many pressures, both local and regional, acting in various combinations in different geographical locations. BioScience, 52, 143-150.CrossRefGoogle Scholar
  61. GLOR, R. E., FLECKER, A. S., BENARD, M. F. & POWER, A. G. 2001. Lizard diversity and agricultural disturbance in a Caribbean forest landscape. Biodiversity & Conservation, 10, 711-723.CrossRefGoogle Scholar
  62. GOTTDENKER, N. L., STREICKER, D. G., FAUST, C. L. & CARROLL, C. 2014. Anthropogenic land use change and infectious diseases: a review of the evidence. Ecohealth, 11, 619-632.CrossRefPubMedGoogle Scholar
  63. GRAHAM, L. L., GIESEN, W. & PAGE, S. E. 2017. A common‐sense approach to tropical peat swamp forest restoration in Southeast Asia. Restoration Ecology, 25, 312-321.CrossRefGoogle Scholar
  64. Gray C, Slade E, Mann D, Lewis O (2017) Designing oil palm landscapes to retain biodiversity using insights from a key ecological indicator group. bioRxiv 204347Google Scholar
  65. GRAY, C. L., LEWIS, O. T., CHUNG, A. Y. & FAYLE, T. M. 2015. Riparian reserves within oil palm plantations conserve logged forest leaf litter ant communities and maintain associated scavenging rates. Journal of Applied Ecology, 52, 31-40.CrossRefPubMedGoogle Scholar
  66. GRIGG, M. J., COX, J., WILLIAM, T., JELIP, J., FORNACE, K. M., BROCK, P. M., VON SEIDLEIN, L., BARBER, B. E., ANSTEY, N. M., YEO, T. W. & DRAKELEY, C. J. 2017. Individual-level factors associated with the risk of acquiring human Plasmodium knowlesi malaria in Malaysia: a case-control study. The Lancet Planetary Health, 1, e97-e104.CrossRefPubMedPubMedCentralGoogle Scholar
  67. GUERRA, C. A., SNOW, R. W. & HAY, S. I. 2006. A global assessment of closed forests, deforestation and malaria risk. Annals of tropical medicine and parasitology, 100, 189.CrossRefPubMedPubMedCentralGoogle Scholar
  68. GUMERT, M. D. 2011. The common monkey of Southeast Asia: Longtailed macaque populations, ethnophoresy, and their occurrence in human environments. Monkeys on the edge: Ecology and management of long-tailed macaques and their interface with humans, 3-44.CrossRefGoogle Scholar
  69. HAMBALI, K., ISMAIL, A., MD-ZAIN, B. M., AMIR, A. & KARIM, F. A. 2014. Diet of Long-Tailed Macaques (Macaca fascicularis) at the entrance of Kuala Selangor Nature Park (Anthropogenic Habitat): Food selection that leads to human-macaque conflict. Acta Biologica Malaysiana, 3, 58-68.Google Scholar
  70. HAMBALI, K., ISMAIL, A., ZULKIFLI, S. Z., MD-ZAIN, B. M. & AMIR, A. 2012. Human-macaque conflict and pest behaviors of long-tailed macaques (Macaca fascicularis) in Kuala Selangor Nature Park. Tropical Natural History, 12, 189-205.Google Scholar
  71. Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A, Thau D, Stehman SV, Goetz SJ, Loveland TR, Kommareddy A (2013) High-resolution global maps of 21st-century forest cover change. Science 342(6160):850-853CrossRefGoogle Scholar
  72. HASYIM, H., NURSAFINGI, A., HAQUE, U., MONTAG, D., GRONEBERG, D. A., DHIMAL, M., KUCH, U. & MÜLLER, R. 2018. Spatial modelling of malaria cases associated with environmental factors in South Sumatra, Indonesia. Malaria journal, 17, 87.CrossRefPubMedPubMedCentralGoogle Scholar
  73. HEARN, A. J., CUSHMAN, S. A., GOOSSENS, B., MACDONALD, E., ROSS, J., HUNTER, L. T., ABRAM, N. K. & MACDONALD, D. W. 2018. Evaluating scenarios of landscape change for Sunda clouded leopard connectivity in a human dominated landscape. Biological Conservation, 222, 232-240.CrossRefGoogle Scholar
  74. Hecht SB, Cockburn A (2010) The fate of the forest: developers, destroyers, and defenders of the Amazon. University of Chicago Press, ChicagoCrossRefGoogle Scholar
  75. HECTOR, A., PHILIPSON, C., SANER, P., CHAMAGNE, J., DZULKIFLI, D., O’BRIEN, M., SNADDON, J. L., ULOK, P., WEILENMANN, M. & REYNOLDS, G. 2011. The Sabah Biodiversity Experiment: a long-term test of the role of tree diversity in restoring tropical forest structure and functioning. Philosophical Transactions of the Royal Society B: Biological Sciences, 366, 3303-3315.CrossRefGoogle Scholar
  76. HII, J., VYTHILINGAM, I. & ROCA-FELTRER, A. 2018. Human and Simian Malaria in the Greater Mekong Subregion and Challenges for Elimination. Towards Malaria Elimination-A Leap Forward. IntechOpen.CrossRefGoogle Scholar
  77. HOBBS, R. J., ARICO, S., ARONSON, J., BARON, J. S., BRIDGEWATER, P., CRAMER, V. A., EPSTEIN, P. R., EWEL, J. J., KLINK, C. A. & LUGO, A. E. 2006. Novel ecosystems: theoretical and management aspects of the new ecological world order. Global ecology and biogeography, 15, 1-7.CrossRefGoogle Scholar
  78. HOBBS, R. J. & CRAMER, V. A. 2008. Restoration ecology: interventionist approaches for restoring and maintaining ecosystem function in the face of rapid environmental change. Annual Review of Environment and Resources, 33, 39-61.CrossRefGoogle Scholar
  79. HOBBS, R. J., HIGGS, E. & HARRIS, J. A. 2009. Novel ecosystems: implications for conservation and restoration. Trends in ecology & evolution, 24, 599-605.CrossRefGoogle Scholar
  80. HOBBS, R. J. & NORTON, D. A. 1996. Towards a conceptual framework for restoration ecology. Restoration ecology, 4, 93-110.CrossRefGoogle Scholar
  81. HOLL, K. D. 2017. Research directions in tropical forest restoration. Annals of the Missouri Botanical Garden, 102, 237-250.CrossRefGoogle Scholar
  82. Hughes AC (2017) Understanding the drivers of Southeast Asian biodiversity loss. Ecosphere 8(1): 01624CrossRefGoogle Scholar
  83. ITIOKA, T., TAKANO, K., KISHIMOTO-YAMADA, K., TZUCHIYA, T., OHSHIMA, Y., KATSUYAMA, R.-I., YAGO, M., YATA, O., NAKAGAWA, M. & NAKASHIZUKA, T. 2015. Chronosequential changes in species richness of forest-edge-dwelling butterflies during forest restoration after swidden cultivation in a humid tropical rainforest region in Borneo. Journal of Forest Research, 20, 125-134.CrossRefGoogle Scholar
  84. James D, Phua M-H, Besar NA, Mokhtar M (2016) Aboveground carbon stock potential of teak (tectona grandis) under different land use system in Balung plantation, Tawau SabahGoogle Scholar
  85. Jarvis M (2016) The dietary impacts of deforestation on macaca fascicularis (long-tailed macaque) using metabarcoding. Imperial College, LondonGoogle Scholar
  86. JOHNSON, P. & THIELTGES, D. 2010. Diversity, decoys and the dilution effect: how ecological communities affect disease risk. Journal of Experimental Biology, 213, 961-970.CrossRefPubMedGoogle Scholar
  87. JOHNSON, P. T., PRESTON, D. L., HOVERMAN, J. T. & RICHGELS, K. L. 2013. Biodiversity decreases disease through predictable changes in host community competence. Nature, 494, 230.CrossRefPubMedGoogle Scholar
  88. JONES, B. A., GRACE, D., KOCK, R., ALONSO, S., RUSHTON, J., SAID, M. Y., MCKEEVER, D., MUTUA, F., YOUNG, J. & MCDERMOTT, J. 2013. Zoonosis emergence linked to agricultural intensification and environmental change. Proceedings of the National Academy of Sciences, 110, 8399-8404.CrossRefGoogle Scholar
  89. KASSAM, Z. 2017. Considerations of Development in Malaysian Borneo. EnviroLab Asia, 1, 5.CrossRefGoogle Scholar
  90. KEESING, F., BELDEN, L. K., DASZAK, P., DOBSON, A., HARVELL, C. D., HOLT, R. D., HUDSON, P., JOLLES, A., JONES, K. E. & MITCHELL, C. E. 2010. Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature, 468, 647-652.CrossRefPubMedGoogle Scholar
  91. KEESING, F., HOLT, R. D. & OSTFELD, R. S. 2006. Effects of species diversity on disease risk. Ecology Letters, 9, 485-498.CrossRefPubMedGoogle Scholar
  92. KEINATH, D. A., DOAK, D. F., HODGES, K. E., PRUGH, L. R., FAGAN, W., SEKERCIOGLU, C. H., BUCHART, S. H. & KAUFFMAN, M. 2017. A global analysis of traits predicting species sensitivity to habitat fragmentation. Global Ecology and Biogeography, 26, 115-127.CrossRefGoogle Scholar
  93. Kilpatrick AM (2011) Globalization, land use, and the invasion of West Nile virus. Science 334(6054):323-7CrossRefPubMedPubMedCentralGoogle Scholar
  94. KILPATRICK, A. M. & RANDOLPH, S. E. 2012. Drivers, dynamics, and control of emerging vector-borne zoonotic diseases. The Lancet, 380, 1946-1955.CrossRefGoogle Scholar
  95. Koh LP (2008) The oil palm conundrum: how oil palm agriculture affects tropical biodiversity and what can we do about it. Princeton University, PrincetonGoogle Scholar
  96. KULKARNI, M. A., DESROCHERS, R. E., KAJEGUKA, D. C., KAAYA, R. D., TOMAYER, A., KWEKA, E. J., PROTOPOPOFF, N. & MOSHA, F. W. 2016. 10 Years of Environmental Change on the Slopes of Mount Kilimanjaro and Its Associated Shift in Malaria Vector Distributions. Frontiers in Public Health, 4, 281.CrossRefPubMedPubMedCentralGoogle Scholar
  97. KWEKA, E. J., KIMARO, E. E. & MUNGA, S. 2016. Effect of Deforestation and Land Use Changes on Mosquito Productivity and Development in Western Kenya Highlands: Implication for Malaria Risk. Frontiers in public health, 4, 238.CrossRefPubMedPubMedCentralGoogle Scholar
  98. KWEKA, E. J., ZHOU, G., GILBREATH, T. M., AFRANE, Y., NYINDO, M., GITHEKO, A. K. & YAN, G. 2011. Predation efficiency of Anopheles gambiae larvae by aquatic predators in western Kenya highlands. Parasites & Vectors, 4, 128.CrossRefGoogle Scholar
  99. LAMBIN, E. F., TRAN, A., VANWAMBEKE, S. O., LINARD, C. & SOTI, V. 2010. Pathogenic landscapes: Interactions between land, people, disease vectors, and their animal hosts. International Journal of Health Geographics, 9, 54.CrossRefPubMedPubMedCentralGoogle Scholar
  100. Laporta GZ, de Prado PI, Kraenkel RA, Coutinho RM, Sallum MA (2013) Biodiversity can help prevent malaria outbreaks in tropical forests. PLoS Neglected Tropical Diseases 7(3):2139CrossRefGoogle Scholar
  101. LAURANCE, W. F., CAMARGO, J. L., FEARNSIDE, P. M., LOVEJOY, T. E., WILLIAMSON, G. B., MESQUITA, R. C., MEYER, C. F., BOBROWIEC, P. E. & LAURANCE, S. G. 2018. An Amazonian rainforest and its fragments as a laboratory of global change. Biological Reviews, 93, 223-247.CrossRefPubMedGoogle Scholar
  102. LEBLOIS, A., DAMETTE, O. & WOLFERSBERGER, J. 2017. What has Driven Deforestation in Developing Countries Since the 2000 s? Evidence from New Remote-Sensing Data. World Development, 92, 82-102.CrossRefGoogle Scholar
  103. LEE, K.-S., COX-SINGH, J., BROOKE, G., MATUSOP, A. & SINGH, B. 2009. Plasmodium knowlesi from archival blood films: Further evidence that human infections are widely distributed and not newly emergent in Malaysian Borneo. International Journal for Parasitology, 39, 1125-1128.CrossRefPubMedPubMedCentralGoogle Scholar
  104. LEE, K.-S., DIVIS, P. C., ZAKARIA, S. K., MATUSOP, A., JULIN, R. A., CONWAY, D. J., COX-SINGH, J. & SINGH, B. 2011. Plasmodium knowlesi: reservoir hosts and tracking the emergence in humans and macaques. PLoS pathogens, 7, e1002015.CrossRefPubMedPubMedCentralGoogle Scholar
  105. LEVI, T., KEESING, F., HOLT, R. D., BARFIELD, M. & OSTFELD, R. S. 2016. Quantifying dilution and amplification in a community of hosts for tick‐borne pathogens. Ecological Applications, 26, 484-498.CrossRefPubMedGoogle Scholar
  106. Loh E, Murray KA, Nava A, Aguirre A, Daszak P (2016) Evaluating the links between biodiversity, land-use change, and infectious disease emergence in tropical fragmented landscapes. Tropical Conservation 13:79-88.Google Scholar
  107. LOVE, K., KURZ, D. J., VAUGHAN, I. P., KE, A., EVANS, L. J. & GOOSSENS, B. 2017. Bearded pig (Sus barbatus) utilisation of a fragmented forest–oil palm landscape in Sabah, Malaysian Borneo. Wildlife Research, 44, 603.CrossRefGoogle Scholar
  108. LUKE, S. H., BARCLAY, H., BIDIN, K., CHEY, V. K., EWERS, R. M., FOSTER, W. A., NAINAR, A., PFEIFER, M., REYNOLDS, G. & TURNER, E. C. 2017a. The effects of catchment and riparian forest quality on stream environmental conditions across a tropical rainforest and oil palm landscape in Malaysian Borneo. Ecohydrology, 10, e1827.CrossRefPubMedPubMedCentralGoogle Scholar
  109. LUKE, S. H., DOW, R. A., BUTLER, S., VUN KHEN, C., ALDRIDGE, D. C., FOSTER, W. A. & TURNER, E. C. 2017b. The impacts of habitat disturbance on adult and larval dragonflies (Odonata) in rainforest streams in Sabah, Malaysian Borneo. Freshwater Biology, 62, 491-506.CrossRefGoogle Scholar
  110. MALHI, Y., GARDNER, T. A., GOLDSMITH, G. R., SILMAN, M. R. & ZELAZOWSKI, P. 2014. Tropical forests in the Anthropocene. Annual Review of Environment and Resources, 39, 125-159.CrossRefGoogle Scholar
  111. MANIN, B. O., DRAKELEY, C. J. & CHUA, T. H. 2018. Mitochondrial variation in subpopulations of Anopheles balabacensis Baisas in Sabah, Malaysia (Diptera: Culicidae). PloS one, 13, e0202905.CrossRefPubMedPubMedCentralGoogle Scholar
  112. MANIN, B. O., FERGUSON, H. M., VYTHILINGAM, I., FORNACE, K., WILLIAM, T., TORR, S. J., DRAKELEY, C. & CHUA, T. H. 2016. Investigating the contribution of peri-domestic transmission to risk of zoonotic malaria infection in humans. PLoS neglected tropical diseases, 10, e0005064.CrossRefPubMedPubMedCentralGoogle Scholar
  113. MARTIN, P. A., NEWTON, A. C., PFEIFER, M., KHOO, M. & BULLOCK, J. M. 2015. Impacts of tropical selective logging on carbon storage and tree species richness: A meta-analysis. Forest Ecology and Management, 356, 224-233.CrossRefGoogle Scholar
  114. MCCALLUM, H. I. 2015. Lose biodiversity, gain disease. Proceedings of the National Academy of Sciences, 112, 8523-8524.CrossRefGoogle Scholar
  115. MCFARLANE, R. A., SLEIGH, A. C. & MCMICHAEL, A. J. 2013. Land-use change and emerging infectious disease on an island continent. International journal of environmental research and public health, 10, 2699.CrossRefPubMedPubMedCentralGoogle Scholar
  116. MERCER, E. V., MERCER, T. G. & SAYOK, A. K. 2014. Effects of forest conversions to oil palm plantations on freshwater macroinvertebrates: a case study from Sarawak, Malaysia. Journal of Land Use Science, 9, 260-277.CrossRefGoogle Scholar
  117. MERETA, S. T., YEWHALAW, D., BOETS, P., AHMED, A., DUCHATEAU, L., SPEYBROECK, N., VANWAMBEKE, S. O., LEGESSE, W., DE MEESTER, L. & GOETHALS, P. L. M. 2013. Physico-chemical and biological characterization of anopheline mosquito larval habitats (Diptera: Culicidae): implications for malaria control. Parasites & vectors, 6, 320.CrossRefGoogle Scholar
  118. MIETTINEN, J., SHI, C. & LIEW, S. C. 2011. Deforestation rates in insular Southeast Asia between 2000 and 2010. Global Change Biology, 17, 2261-2270.CrossRefGoogle Scholar
  119. MILLS, J. N. 2006. Biodiversity loss and emerging infectious disease: an example from the rodent-borne hemorrhagic fevers. Biodiversity, 7, 9-17.CrossRefGoogle Scholar
  120. MOKANY, A. & SHINE, R. 2003. Oviposition site selection by mosquitoes is affected by cues from conspecific larvae and anuran tadpoles. Austral Ecology, 28, 33-37.CrossRefGoogle Scholar
  121. MORAND, S., JITTAPALAPONG, S., SUPUTTAMONGKOL, Y., ABDULLAH, M. T. & HUAN, T. B. 2014. Infectious diseases and their outbreaks in Asia-Pacific: biodiversity and its regulation loss matter. PLoS One, 9, e90032.CrossRefPubMedPubMedCentralGoogle Scholar
  122. Morris AL, Guégan JF, Andreou D, Marsollier L, Carolan K, Le Croller M, Sanhueza D, Gozlan RE (2016) Deforestation-driven food-web collapse linked to emerging tropical infectious disease, Mycobacterium ulcerans. Science Advances 2(12):1600387CrossRefPubMedPubMedCentralGoogle Scholar
  123. Moyes CL, Henry AJ, Golding N, Huang Z, Singh B, Baird JK, Newton PN, Huffman M, Duda KA, Drakeley CJ, Elyazar IR (2014) Defining the geographical range of the Plasmodium knowlesi reservoir. PLoS Neglected Tropical Diseases 8(3):2780CrossRefGoogle Scholar
  124. MOYES, C. L., SHEARER, F. M., HUANG, Z., WIEBE, A., GIBSON, H. S., NIJMAN, V., MOHD-AZLAN, J., BRODIE, J. F., MALAIVIJITNOND, S., LINKIE, M., SAMEJIMA, H., O’BRIEN, T. G., TRAINOR, C. R., HAMADA, Y., GIORDANO, A. J., KINNAIRD, M. F., ELYAZAR, I. R. F., SINKA, M. E., VYTHILINGAM, I., BANGS, M. J., PIGOTT, D. M., WEISS, D. J., GOLDING, N. & HAY, S. I. 2016. Predicting the geographical distributions of the macaque hosts and mosquito vectors of Plasmodium knowlesi malaria in forested and non-forested areas. Parasites & Vectors, 9, 242.CrossRefGoogle Scholar
  125. MUNGA, S., MINAKAWA, N., ZHOU, G., MUSHINZIMANA, E., BARRACK, O.-O. J., GITHEKO, A. K. & YAN, G. 2006. Association between land cover and habitat productivity of malaria vectors in western Kenyan highlands. The American journal of tropical medicine and hygiene, 74, 69.CrossRefPubMedGoogle Scholar
  126. MURRAY, K. A. & DASZAK, P. 2013. Human ecology in pathogenic landscapes: two hypotheses on how land use change drives viral emergence. Current opinion in virology, 3, 79-83.CrossRefPubMedPubMedCentralGoogle Scholar
  127. MYERS, N., MITTERMEIER, R. A., MITTERMEIER, C. G., DA FONSECA, G. A. & KENT, J. 2000. Biodiversity hotspots for conservation priorities. Nature, 403, 853.CrossRefPubMedGoogle Scholar
  128. O’SULLIVAN, L., JARDINE, A., COOK, A. & WEINSTEIN, P. 2008. Deforestation, Mosquitoes, and Ancient Rome: Lessons for Today. BioScience, 58, 756-760.CrossRefGoogle Scholar
  129. Ooi CH, Bujang MA, Bakar TM, Ngui R, Lim YA (2017) Over two decades of Plasmodium knowlesi infections in Sarawak: trend and forecast. Acta Tropica 176:83-90.CrossRefPubMedGoogle Scholar
  130. OSTFELD, R. S. 2009. Biodiversity loss and the rise of zoonotic pathogens. Clinical Microbiology and Infection, 15, 40-43.CrossRefPubMedGoogle Scholar
  131. OSTFELD, R. S. & KEESING, F. 2000a. Biodiversity and disease risk: the case of Lyme disease. Conservation Biology, 14, 722-728.CrossRefGoogle Scholar
  132. OSTFELD, R. S. & KEESING, F. 2000b. Biodiversity series: the function of biodiversity in the ecology of vector-borne zoonotic diseases. Canadian Journal of Zoology, 78, 2061-2078.CrossRefGoogle Scholar
  133. OSTFELD, R. S. & KEESING, F. 2017. Is biodiversity bad for your health? Ecosphere, 8, e01676-n/aCrossRefGoogle Scholar
  134. OVERGAARD, H. J., EKBOM, B., SUWONKERD, W. & TAKAGI, M. 2003. Effect of landscape structure on anopheline mosquito density and diversity in northern Thailand: Implications for malaria transmission and control. Landscape ecology, 18, 605.CrossRefGoogle Scholar
  135. PARDO, L. E., DE OLIVEIRA ROQUE, F., CAMPBELL, M. J., YOUNES, N., EDWARDS, W. & LAURANCE, W. F. 2018. Identifying critical limits in oil palm cover for the conservation of terrestrial mammals in Colombia. Biological Conservation, 227, 65-73.CrossRefGoogle Scholar
  136. PASCUAL, M., AHUMADA, J. A., CHAVES, L. F., RODÓ, X. & BOUMA, M. 2006. Malaria resurgence in the East African highlands: temperature trends revisited. Proceedings of the National Academy of Sciences of the United States of America, 103, 5829.CrossRefPubMedPubMedCentralGoogle Scholar
  137. PATZ, J. & OLSON, S. 2006. Malaria risk and temperature: Influences from global climate change and local land use practices. Proceedings of the National Academy of Sciences of the United States of America, 103, 5635-5636.CrossRefPubMedPubMedCentralGoogle Scholar
  138. PATZ, J. A., DASZAK, P., TABOR, G. M., AGUIRRE, A. A., PEARL, M., EPSTEIN, J., WOLFE, N. D., KILPATRICK, A. M., FOUFOPOULOS, J., MOLYNEUX, D., BRADLEY, D. J. & MEMBERS OF THE WORKING GROUP ON LAND USE CHANGE DISEASE, E. 2004. Unhealthy Landscapes: Policy Recommendations on Land Use Change and Infectious Disease Emergence. Environmental Health Perspectives, 112, 1092-1098.CrossRefPubMedPubMedCentralGoogle Scholar
  139. PATZ, J. A., GRACZYK, T. K., GELLER, N. & VITTOR, A. Y. 2000. Effects of environmental change on emerging parasitic diseases. International journal for parasitology, 30, 1395-1405.CrossRefPubMedGoogle Scholar
  140. PATZ, J. A., OLSON, S. H., UEJIO, C. K. & GIBBS, H. K. 2008. Disease Emergence from Global Climate and Land Use Change. Medical Clinics of North America, 92, 1473-1491.CrossRefPubMedGoogle Scholar
  141. Peterson JV, Riley EP (2013) Monyet yang dihargai, monyet yang dibenci: the human–macaque interface in Indonesia. In: The Macaque Connection, SpringerGoogle Scholar
  142. PRUGH, L. R., HODGES, K. E., SINCLAIR, A. R. & BRASHARES, J. S. 2008. Effect of habitat area and isolation on fragmented animal populations. Proceedings of the National Academy of Sciences, 105, 20770-20775.CrossRefGoogle Scholar
  143. RAJAHRAM, G. S., BARBER, B. E., WILLIAM, T., GRIGG, M. J., MENON, J., YEO, T. W. & ANSTEY, N. M. 2016. Falling Plasmodium knowlesi Malaria Death Rate among Adults despite Rising Incidence, Sabah, Malaysia, 2010–2014. Emerging Infectious Diseases, 22, 41-48.CrossRefPubMedPubMedCentralGoogle Scholar
  144. Ramasamy R, Surendran SN (2016) Mosquito vectors developing in atypical anthropogenic habitats: global overview of recent observations, mechanisms and impact on disease transmission. Journal of Vector Borne Diseases 53(2):91.PubMedGoogle Scholar
  145. Raven PH (1988) Our diminishing tropical forests. Biodiversity 15:119-122Google Scholar
  146. ROMELL, E., HALLSBY, G., KARLSSON, A. & GARCIA, C. 2008. Artificial canopy gaps in a Macaranga spp. dominated secondary tropical rain forest—effects on survival and above ground increment of four under-planted dipterocarp species. Forest Ecology and Management, 255, 1452-1460.CrossRefGoogle Scholar
  147. RUDEL, T. K. 2017. The Dynamics of Deforestation in the Wet and Dry Tropics: A Comparison with Policy Implications. Forests, 8, 108.CrossRefGoogle Scholar
  148. Rueda Páramo ME, López Lastra CC, García JJ (2015) Persistence and pathogenicity of a native isolate of Leptolegnia chapmanii against Aedes aegypti larvae in different anthropic environments. Biocontrol Science and Technology 25(2):238-243.CrossRefGoogle Scholar
  149. SALKELD, D. J., PADGETT, K. A. & JONES, J. H. 2013. A meta-analysis suggesting that the relationship between biodiversity and risk of zoonotic pathogen transmission is idiosyncratic. Ecology Letters, 16, 679-686.CrossRefPubMedGoogle Scholar
  150. SALLUM, M., PEYTON, E. & WILKERSON, R. 2005b. Six new species of the Anopheles leucosphyrus group, reinterpretation of An. elegans and vector implications. Medical and veterinary entomology, 19, 158-199.CrossRefPubMedGoogle Scholar
  151. SALLUM, M. A. M., FOSTER, P. G., LI, C., SITHIPRASASNA, R. & WILKERSON, R. C. 2007. Phylogeny of the Leucosphyrus Group of Anopheles (Cellia)(Diptera: Culicidae) based on mitochondrial gene sequences. Annals of the Entomological Society of America, 100, 27-35.CrossRefGoogle Scholar
  152. SALLUM, M. A. M., PEYTON, E. L., HARRISON, B. A. & WILKERSON, R. C. 2005a. Revision of the Leucosphyrus group of Anopheles (Cellia) (Diptera, Culicidae). Revista Brasileira de Entomologia, 49, 01-152.CrossRefGoogle Scholar
  153. SANDIFER, P. A., SUTTON-GRIER, A. E. & WARD, B. P. 2015. Exploring connections among nature, biodiversity, ecosystem services, and human health and well-being: Opportunities to enhance health and biodiversity conservation. Ecosystem Services, 12, 1-15.CrossRefGoogle Scholar
  154. SAVILAAKSO, S., GARCIA, C., GARCIA-ULLOA, J., GHAZOUL, J., GROOM, M., GUARIGUATA, M. R., LAUMONIER, Y., NASI, R., PETROKOFSKY, G., SNADDON, J. & ZRUST, M. 2014. Systematic review of effects on biodiversity from oil palm production. Environmental Evidence, 3, 4.CrossRefGoogle Scholar
  155. SAWARD-ARAV, D., SADEH, A., MANGEL, M., TEMPLETON, A. R. & BLAUSTEIN, L. 2016. Oviposition responses of two mosquito species to pool size and predator presence: varying trade-offs between desiccation and predation risks. Israel Journal of Ecology & Evolution, 62, 143-148.CrossRefGoogle Scholar
  156. SAXENA, R., NAGPAL, B., SINGH, V., SRIVASTAVA, A., DEV, V., SHARMA, M., GUPTA, H., TOMAR, A. S., SHARMA, S. & GUPTA, S. K. 2014. Impact of deforestation on known malaria vectors in Sonitpur district of Assam, India. Journal of vector borne diseases, 51, 211.PubMedGoogle Scholar
  157. SCRIVEN, S. A., BEALE, C. M., BENEDICK, S. & HILL, J. K. 2017. Barriers to dispersal of rain forest butterflies in tropical agricultural landscapes. Biotropica, 49, 206-216.CrossRefGoogle Scholar
  158. SEAN, L. M., RICHARD, A. F., THOMAS, M. B. & JAMES, E. M. W. 2016. Biodiversity: The ravages of guns, nets and bulldozers. Nature, 536, 143.CrossRefGoogle Scholar
  159. SER 2004. The SER International Primer on Ecological Restoration. Tuscon Arizona: Society for Ecological Restoration International Science and Policy Working Group.Google Scholar
  160. SHAALAN, E. A.-S. & CANYON, D. V. 2009. Aquatic insect predators and mosquito control. Tropical biomedicine, 26, 223-261.PubMedGoogle Scholar
  161. SHEARER, F. M., HUANG, Z., WEISS, D. J., WIEBE, A., GIBSON, H. S., BATTLE, K. E., PIGOTT, D. M., BRADY, O. J., PUTAPORNTIP, C., JONGWUTIWES, S., LAU, Y. L., MANSKE, M., AMATO, R., ELYAZAR, I. R. F., VYTHILINGAM, I., BHATT, S., GETHING, P. W., SINGH, B., GOLDING, N., HAY, S. I. & MOYES, C. L. 2016. Estimating Geographical Variation in the Risk of Zoonotic Plasmodium knowlesi Infection in Countries Eliminating Malaria. PLOS Neglected Tropical Diseases, 10, e0004915.CrossRefPubMedPubMedCentralGoogle Scholar
  162. SHUHADA, S. N., SALIM, S., NOBILLY, F., ZUBAID, A. & AZHAR, B. 2017. Logged peat swamp forest supports greater macrofungal biodiversity than large‐scale oil palm plantations and smallholdings. Ecology and evolution, 7, 7187-7200.CrossRefPubMedPubMedCentralGoogle Scholar
  163. SINGH, B. & DANESHVAR, C. 2013. Human infections and detection of Plasmodium knowlesi. Clinical Microbiology Reviews 26 165-184CrossRefPubMedPubMedCentralGoogle Scholar
  164. SITHIPRASASNA, R., LEE, W. J., UGSANG, D. M. & LINTHICUM, K. J. 2005. Identification and characterization of larval and adult anopheline mosquito habitats in the Republic of Korea: potential use of remotely sensed data to estimate mosquito distributions. International journal of health geographics, 4, 17.CrossRefPubMedPubMedCentralGoogle Scholar
  165. SODHI, N. S., KOH, L. P., BROOK, B. W. & NG, P. K. 2004. Southeast Asian biodiversity: an impending disaster. Trends in Ecology & Evolution, 19, 654-660.CrossRefGoogle Scholar
  166. Sodhi NS, Posa MR, Peh KS, Koh LP, Soh MC, Lee TM, Lee JS, Wanger TC, Brook BW (2012) Land use changes imperil South-East Asian biodiversity. In: Land Use Intensification Effects on Agriculture, Biodiversity and Ecological Processes. Boca Raton, FL: CRC Press, pp 39–46Google Scholar
  167. SPELDEWINDE, P., SLANEY, D. & WEINSTEIN, P. 2015. Is restoring an ecosystem good for your health? Science of The Total Environment, 502, 276-279.CrossRefPubMedGoogle Scholar
  168. SUARDI, H., BESAR, N. A., MUI-HOW, P. & MOKHTAR, M. 2016. Carbon stock estimation of agroforestry system in Tawau, Sabah. Transaction on Science and Technology, 3, 25-30.Google Scholar
  169. SUZÁN, G., MARCÉ, E., GIERMAKOWSKI, J. T., MILLS, J. N., CEBALLOS, G., OSTFELD, R. S., ARMIÉN, B., PASCALE, J. M. & YATES, T. L. 2009. Experimental evidence for reduced rodent diversity causing increased hantavirus prevalence. PloS one, 4, e5461.CrossRefPubMedPubMedCentralGoogle Scholar
  170. Takano KT, Nakagawa M, Itioka T, Kishimoto-Yamada K, Yamashita S, Tanaka HO, Fukuda D, Nagamasu H, Ichikawa M, Kato Y, Momose K (2014) The extent of biodiversity recovery during reforestation after Swidden cultivation and the impacts of land-use changes on the biodiversity of a tropical rainforest region in Borneo. In: Social-Ecological Systems in Transition, SpringerGoogle Scholar
  171. TAN, C. H., VYTHILINGAM, I., MATUSOP, A., CHAN, S. T. & SINGH, B. 2008. Bionomics of Anopheles latens in Kapit, Sarawak, Malaysian Borneo in relation to the transmission of zoonotic simian malaria parasite Plasmodium knowlesi. Malaria Journal, 7, 52.CrossRefPubMedPubMedCentralGoogle Scholar
  172. Tanner D, Kirk R (2008) Matrix to mosaic: habitat fragmentation from 1982–1999 in Sabah, Malaysian Borneo. Borneo Research Bulletin 39:255.Google Scholar
  173. Taubert F, Fischer R, Groeneveld J, Lehmann S, Müller MS, Rödig E, Wiegand T, Huth A (2018) Global patterns of tropical forest fragmentation. Nature 554(7693):519CrossRefPubMedGoogle Scholar
  174. TEUSCHER, M., VORLAUFER, M., WOLLNI, M., BROSE, U., MULYANI, Y. & CLOUGH, Y. 2015. Trade-offs between bird diversity and abundance, yields and revenue in smallholder oil palm plantations in Sumatra, Indonesia. Biological Conservation, 186, 306-318.CrossRefGoogle Scholar
  175. THONGSRIPONG, P., GREEN, A., KITTAYAPONG, P., KAPAN, D., WILCOX, B. & BENNETT, S. 2013. Mosquito vector diversity across habitats in central Thailand endemic for dengue and other arthropod-borne diseases. PLoS neglected tropical diseases, 7, e2507.CrossRefPubMedPubMedCentralGoogle Scholar
  176. Tuck SL, O’brien MJ, Philipson CD, Saner P, Tanadini M, Dzulkifli D, Godfray HCJ, Godoong E, Nilus R, Ong RC (2016) The value of biodiversity for the functioning of tropical forests: insurance effects during the first decade of the Sabah biodiversity experiment. In: Proceedings of Royal Society B, The Royal Society, 20161451Google Scholar
  177. TUCKER LIMA, J. M., VITTOR, A., RIFAI, S. & VALLE, D. 2017. Does deforestation promote or inhibit malaria transmission in the Amazon? A systematic literature review and critical appraisal of current evidence. Philosophical Transactions of the Royal Society B: Biological Sciences, 372.Google Scholar
  178. TUNO, N., OKEKA, W., MINAKAWA, N., TAKAGI, M. & YAN, G. 2005. Survivorship of Anopheles gambiae sensu stricto (Diptera: Culicidae) Larvae in Western Kenya Highland Forest. Journal of Medical Entomology, 42, 270-277.CrossRefPubMedGoogle Scholar
  179. TURNER, E. C. & FOSTER, W. A. 2009. The impact of forest conversion to oil palm on arthropod abundance and biomass in Sabah, Malaysia. Journal of tropical ecology, 25, 23-30.CrossRefGoogle Scholar
  180. VITTOR, A. Y., GILMAN, R. H., TIELSCH, J., GLASS, G., SHIELDS, T., LOZANO, W. S., PINEDO-CANCINO, V. & PATZ, J. A. 2006. The effect of deforestation on the human-biting rate of Anopheles darlingi, the primary vector of falciparum malaria in the Peruvian Amazon. The American journal of tropical medicine and hygiene, 74, 3-11.CrossRefPubMedGoogle Scholar
  181. VITTOR, A. Y., PAN, W., GILMAN, R. H., TIELSCH, J., GLASS, G., SHIELDS, T., SÁNCHEZ-LOZANO, W., PINEDO, V. V., SALAS-COBOS, E. & FLORES, S. 2009. Linking deforestation to malaria in the Amazon: characterization of the breeding habitat of the principal malaria vector, Anopheles darlingi. The American journal of tropical medicine and hygiene, 81, 5.CrossRefPubMedPubMedCentralGoogle Scholar
  182. VYTHILINGAM, I., LIM, Y. A., VENUGOPALAN, B., NGUI, R., LEONG, C. S., WONG, M. L., KHAW, L., GOH, X., YAP, N., SULAIMAN, W. Y. W., JEFFERY, J., ZAWIAH, A. G. C., NOR ASZLINA, I., SHARMA, R. S., YEE LING, L. & MAHMUD, R. 2014. Plasmodium knowlesi malaria an emerging public health problem in Hulu Selangor, Selangor, Malaysia (2009–2013): epidemiologic and entomologic analysis. Parasites & Vectors, 7, 436.CrossRefGoogle Scholar
  183. Vythilingam I, Wong ML, Wan-Yussof WS (2016) Current status of Plasmodium knowlesi vectors: a public health concern? Parasitology 2016:1-9Google Scholar
  184. Wang X, Zhou G, Zhong D, Wang X, Wang Y, Yang Z, Cui L, Yan G (2016) Life-table studies revealed significant effects of deforestation on the development and survivorship of Anopheles minimus larvae. Parasites & Vectors 9(1):323CrossRefGoogle Scholar
  185. WILCOVE, D. S., GIAM, X., EDWARDS, D. P., FISHER, B. & KOH, L. P. 2013. Navjot’s nightmare revisited: logging, agriculture, and biodiversity in Southeast Asia. Trends in ecology & evolution, 28, 531-540.CrossRefGoogle Scholar
  186. WILCOVE, D. S. & KOH, L. P. 2010. Addressing the threats to biodiversity from oil-palm agriculture. Biodiversity and Conservation, 19, 999-1007.CrossRefGoogle Scholar
  187. WILCOX, B. A. & COLWELL, R. R. 2005. Emerging and reemerging infectious diseases: biocomplexity as an interdisciplinary paradigm. EcoHealth, 2, 244.CrossRefGoogle Scholar
  188. William T, Jelip J, Menon J, Anderios F, Mohammad R, Mohammad TA, Grigg MJ, Yeo TW, Anstey NM, Barber BE (2014) Changing epidemiology of malaria in Sabah, Malaysia: increasing incidence of Plasmodium knowlesi. Malaria Journal 13(1):390CrossRefPubMedPubMedCentralGoogle Scholar
  189. WILLIAM, T., JELIP, J., MENON, J., ANDERIOS, F., MOHAMMAD, R., AWANG MOHAMMAD, T. A., GRIGG, M. J., YEO, T. W., ANSTEY, N. M. & BARBER, B. E. 2014. Changing epidemiology of malaria in Sabah, Malaysia: increasing incidence of Plasmodium knowlesi. Malaria Journal, 13, 390.CrossRefPubMedPubMedCentralGoogle Scholar
  190. WONG, M. L., CHUA, T. H., LEONG, C. S., KHAW, L. T., FORNACE, K., WAN-SULAIMAN, W.-Y., WILLIAM, T., DRAKELEY, C., FERGUSON, H. M. & VYTHILINGAM, I. 2015a. Seasonal and spatial dynamics of the primary vector of Plasmodium knowlesi within a major transmission focus in Sabah, Malaysia. PLoS neglected tropical diseases, 9, e0004135.CrossRefPubMedPubMedCentralGoogle Scholar
  191. WONG, M. L., VYTHILINGAM, I., LEONG, C. S., KHAW, L. T., CHUA, T. H., OBRAIN, B., FERGUSON, H. & DRAKELY, C. 2015b. Incrimination of Anopheles balabacensis as the vector for simian malaria in Kudat Division, Sabah, Malaysia. Journal of Microbiology, Immunology and Infection, 48, S47-S48.CrossRefGoogle Scholar
  192. WOODRUFF, D. S. 2010. Biogeography and conservation in Southeast Asia: how 2.7 million years of repeated environmental fluctuations affect today’s patterns and the future of the remaining refugial-phase biodiversity. Biodiversity and Conservation, 19, 919-941.CrossRefGoogle Scholar
  193. WORLD HEALTH ORGANIZATION 2017. Expert Consultation on Plasmodium knowlesi Malaria to Guide Malaria Elimination Strategies, Kota Kinabalu, Malaysia, 1-2 March 2017: meeting report. Manila: WHO Regional Office for the Western Pacific.Google Scholar
  194. YAHYA, M. S., SYAFIQ, M., ASHTON‐BUTT, A., GHAZALI, A., ASMAH, S. & AZHAR, B. 2017. Switching from monoculture to polyculture farming benefits birds in oil palm production landscapes: Evidence from mist netting data. Ecology and evolution, 7, 6314-6325.CrossRefPubMedPubMedCentralGoogle Scholar
  195. Yakob L, Lloyd AL, Kao RR, Ferguson HM, Brock PM, Drakeley C, Bonsall MB (2018) Plasmodium knowlesi invasion following spread by infected mosquitoes, macaques and humans. Parasitology 145(1):101–110CrossRefPubMedGoogle Scholar
  196. YASUOKA, J. & LEVINS, R. 2007. Impact of deforestation and agricultural development on anopheline ecology and malaria epidemiology. The American journal of tropical medicine and hygiene, 76, 450-460.CrossRefPubMedGoogle Scholar
  197. YEONG, K. L., REYNOLDS, G. & HILL, J. K. 2016. Enrichment planting to improve habitat quality and conservation value of tropical rainforest fragments. Biodiversity and conservation, 25, 957-973.CrossRefGoogle Scholar
  198. YOUNG, H. S., WOOD, C. L., KILPATRICK, A. M., LAFFERTY, K. D., NUNN, C. L. & VINCENT, J. R. 2017. Conservation, biodiversity and infectious disease: scientific evidence and policy implications. Philosophical Transactions of the Royal Society B: Biological Sciences, 372, 20160124.CrossRefGoogle Scholar
  199. YUE, S., BRODIE, J. F., ZIPKIN, E. F. & BERNARD, H. 2015. Oil palm plantations fail to support mammal diversity. Ecological Applications, 25, 2285-2292.CrossRefPubMedGoogle Scholar

Copyright information

© EcoHealth Alliance 2019

Authors and Affiliations

  1. 1.CENRM and School of Population and Global HealthUniversity of Western AustraliaPerthAustralia
  2. 2.Department of Pathobiology and Medical Diagnostics, Faculty of Medicine and Health SciencesUniversiti Malaysia SabahKota KinabaluMalaysia
  3. 3.School of Population and Global HealthUniversity of Western AustraliaPerthAustralia
  4. 4.CENRMUniversity of Western AustraliaPerthAustralia
  5. 5.School of Biological SciencesUniversity of AdelaideAdelaideAustralia

Personalised recommendations