, Volume 15, Issue 1, pp 72–81 | Cite as

Antibiotic-Resistant Escherichia coli in Migratory Birds Inhabiting Remote Alaska

  • Andrew M. Ramey
  • Jorge Hernandez
  • Veronica Tyrlöv
  • Brian D. Uher-Koch
  • Joel A. Schmutz
  • Clara Atterby
  • Josef D. Järhult
  • Jonas Bonnedahl
Original Contribution


We explored the abundance of antibiotic-resistant Escherichia coli among migratory birds at remote sites in Alaska and used a comparative approach to speculate on plausible explanations for differences in detection among species. At a remote island site, we detected antibiotic-resistant E. coli phenotypes in samples collected from glaucous-winged gulls (Larus glaucescens), a species often associated with foraging at landfills, but not in samples collected from black-legged kittiwakes (Rissa tridactyla), a more pelagic gull that typically inhabits remote areas year-round. We did not find evidence for antibiotic-resistant E. coli among 347 samples collected primarily from waterfowl at a second remote site in western Alaska. Our results provide evidence that glaucous-winged gulls may be more likely to be infected with antibiotic-resistant E. coli at remote breeding sites as compared to sympatric black-legged kittiwakes. This could be a function of the tendency of glaucous-winged gulls to forage at landfills where antibiotic-resistant bacterial infections may be acquired and subsequently dispersed. The low overall detection of antibiotic-resistant E. coli in migratory birds sampled at remote sites in Alaska is consistent with the premise that anthropogenic inputs into the local environment or the relative lack thereof influences the prevalence of antibiotic-resistant bacteria among birds inhabiting the area.


Antibiotic resistance Bacteria E. coli Migratory bird Gull Waterfowl 



We are grateful to Björn Olsen for intellectual input into the design of this study and for his contributions toward field efforts. We appreciate the assistance of Raymond Buchheit, William Kennerley, Lindall Kidd, Tyler Lewis, Jillian Soller, Timothy Spivey, and Megan Zarzycki in collecting samples for this project at the outer Yukon–Kuskokwim Delta. We thank Scott Hatch for logistical support while sampling on Middleton Island. We appreciate constructive reviews provided by Christina Ahlstrom, Colleen Handel, John Pearce, and two anonymous reviewers. This work was funded, in part, by the US Geological Survey (USGS) through the Contaminants Biology Program of the Environmental Health Mission Area and through the Wildlife Program of the Ecosystems Mission Area. Data presented in this paper are publicly available via the USGS Alaska Science Center at: All sampling procedures involving live animals as reported in this study were reviewed by the Animal Care and Use Committee at the USGS Alaska Science Center (2008–17) and conducted under USGS federal bird banding permit #20022. Any use of trade names is for descriptive purposes only and does not imply endorsement by the US Government.

Compliance with Ethical Standards

Ethics Statement

All applicable institutional and/or national guidelines for the care and use of animals were followed.


  1. Allen, S. E., P. Boerlin, N. Janecko, J. S. Lumsden, I. K. Barker, D. L. Pearl, R. J. Reid-Smith, and C. Jardine. 2011. Antimicrobial resistance in generic Escherichia coli isolates from wild small mammals living in swine farm, residential, landfill, and natural environments in southern Ontario, Canada. Appl Environ Microbiol 77:882-888.CrossRefPubMedGoogle Scholar
  2. Atterby, C., A. M. Ramey, G. G. Hall, J. Järhult, S. Börjesson, and J. Bonnedahl. 2016. Increased prevalence of antibiotic-resistant E. coli in gulls sampled in Southcentral Alaska is associated with urban environments. Infect Ecol Epidemiol 6:32334.CrossRefPubMedGoogle Scholar
  3. Bager, F., M. Madsen, J. Christensen, and F. M. Aarestrup. 1997. Avoparcin used as a growth promoter is associated with the occurrence of vancomycin-resistant Enterococcus faecium on Danish poultry and pig farms. Preventive veterinary medicine 31:95-112.CrossRefPubMedGoogle Scholar
  4. Bonnedahl, J., M. Drobni, M. Gauthier-Clerc, J. Hernandez, S. Granholm, Y. Kayser, Å. Melhus, G. Kahlmeter, J. Waldenström, A. Johansson, B. Olsen. 2009. Dissemination of Escherichia coli with CTX-M type ESBL between humans and yellow-legged gulls in the south of France. PLoS ONE 4:e5958.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bonnedahl, J., J. Hernandez, J. Stedt, J. Waldenstrom, B. Olsen, and M. Drobni. 2014. Extended-spectrum beta-lactamases in Escherichia coli and Klebsiella pneumoniae in gulls, Alaska, USA. Emerg Infect Dis 20:897-899.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bonnedahl, J., J. Stedt, J. Waldenström, L. Svensson, M. Drobni, B. Olsen. 2015. Comparison of extended-spectrum β-lactamase (ESBL) CTX-M genotypes in Franklin gulls from Canada and Chile. PLoS ONE 10:e0141315.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Cole, D., D. J. Drum, D. E. Stallknecht, D. G. White, M. D. Lee, S. Ayers, M. Sobsey, J. J. Maurer. 2005. Free-living Canada geese and antimicrobial resistance. Emerg Infec. Dis 11:935-938.CrossRefGoogle Scholar
  8. Dolejska, M., A. Cizek, and I. Literak. 2007. High prevalence of antimicrobial‐resistant genes and integrons in Escherichia coli isolates from black‐headed gulls in the Czech Republic. Journal of Applied Microbiology 103:11-19.CrossRefPubMedGoogle Scholar
  9. Drobni, M., J. Bonnedahl, J. Hernandez, P. Haemig, and B. Olsen. 2009. Vancomycin-resistant enterococci, Point Barrow, Alaska, USA. Emerg Infect Dis 15:838-839.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Egervärn, M., S. Börjesson, S. Byfors, M. Finn, C. Kaipe, S. Englund, and M. Lindblad. 2014. Escherichia coli with extended-spectrum beta-lactamases or transferable AmpC beta-lactamases and Salmonella on meat imported into Sweden. International journal of food microbiology 171:8-14.CrossRefPubMedGoogle Scholar
  11. Ely, C. R., and A. X. Dzubin. 1994. Greater white-fronted goose (Anser albifrons).in P. G. Rodewald, editor. The Birds of North America Cornell Lab of Ornithology, Ithaca.Google Scholar
  12. Fallacara, D.M., C. M. Monahan, T. Y. Morishita, R. F. Wack. 2001. Fecal shedding and antimicrobial susceptibility of selected bacterial pathogens and a survey of intestinal parasites in free-living waterfowl. Avian Dis 1:128-135.CrossRefGoogle Scholar
  13. Gómez, P., C. Lozano, M. C. Camacho, J. F. Lima-Barbero, J. M. Hernández, M. Zarazaga, Ú. Höfle, C. Torres. 2015. Detection of MRSA ST3061-t843-mecC and ST398-t011-mecA in white stork nestlings exposed to human residues. Journal of Antimicrobial Chemotherapy. 21:dkv314.Google Scholar
  14. Goudie RI, GJ Robertson, A Reed (2000). Common eider (Somateria mollissima).in P. G. Rodewald, editor. The Birds of North America. Cornell Lab of Ornithology, Ithaca.Google Scholar
  15. Guenther, S., M. Grobbel, A. Lübke-Becker, A. Goedecke, N. D. Friedrich, L. H. Wieler, C. Ewers. 2010. Antimicrobial resistance profiles of Escherichia coli from common European wild bird species. Veterinary microbiology. 144:219-225.CrossRefPubMedGoogle Scholar
  16. Guenther, S., K. Aschenbrenner, I. Stamm, A. Bethe, T. Semmler, A. Stubbe, M. Stubbe, N. Batsajkhan, Y. Glupczynski, L. H. Wieler, C. Ewers. 2012. Comparable high rates of extended-spectrum-beta-lactamase-producing Escherichia coli in birds of prey from Germany and Mongolia. PLoS ONE 7:e53039.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Hatch SA, GJ Robertson, P Herron Baird (2009). Black-legged kittiwake. in P. G. Rodewald, editor. The Birds of North America Cornell Lab of Ornithology, Ithaca.Google Scholar
  18. Hatch, S. A., V. A. Gill, and D. M. Mulcahy. 2011. Migration and wintering areas of glaucous-winged gulls from south-central Alaska. The Condor 113:340-351.CrossRefGoogle Scholar
  19. Hayward JL, NA Verbeek (2008). Glaucous-winged gull (Larus glaucescens).in P. G. Rodewald, editor. The Birds of North America. Cornell Lab of Ornithology, Ithaca.Google Scholar
  20. Hernandez, J., J. Bonnedahl, I. Eliasson, A. Wallensten, P. Comstedt, A. Johansson, S. Granholm, A. Melhus, B. Olsen, and M. Drobni. 2010. Globally disseminated human pathogenic Escherichia coli of O25b-ST131 clone, harbouring blaCTX-M-15, found in glaucous-winged gull at remote Commander Islands, Russia. Environ Microbiol Rep 2:329-332.CrossRefPubMedGoogle Scholar
  21. Jarlier, V., M. H. Nicolas, G. Fournier, and A. Philippon. 1988. Extended broad-spectrum beta-lactamases conferring transferable resistance to newer beta-lactam agents in Enterobacteriaceae: hospital prevalence and susceptibility patterns. Rev Infect Dis 10:867-878.CrossRefPubMedGoogle Scholar
  22. Kronvall, G., G. Kahlmeter, E. Myhre, and M. F. Galas. 2003. A new method for normalized interpretation of antimicrobial resistance from disk test results for comparative purposes. Clin Microbiol Infect 9:120-132.CrossRefPubMedGoogle Scholar
  23. Kuczkowski, M,. M. Krawiec, B. Voslamber, M. Książczyk, G. Płoskońska-Bugla, and A. Wieliczko. 2016. Virulence genes and the antimicrobial susceptibility of Escherichia coli, isolated from wild waterbirds, in the Netherlands and Poland. Vector-Borne and Zoonotic Diseases. 16:528-536.CrossRefPubMedGoogle Scholar
  24. Limpert RJ, SL Earnst (1994). Tundra swan (Cygnus columbianus).in P. G. Rodewald, editor. The Birds of North America. Cornell Lab of Ornithology, Ithaca.Google Scholar
  25. Literak, I., M. Dolejska, D. Janoszowska, J. Hrusakova, W. Meissner, H. Rzyska, S. Bzoma, A. Cizek. 2010. Antibiotic-resistant Escherichia coli bacteria, including strains with genes encoding the extended-spectrum beta-lactamase and QnrS, in waterbirds on the Baltic Sea Coast of Poland. Applied and environmental microbiology. 76:8126-8134.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Mathys DA, Mollenkopf DF, Nolting J, Bowman AS, Daniels JB, Wittum TE (2017) Extended-spectrum cephalosporin-resistant enterobacteriaceae in enteric microflora of wild ducks. Journal of Wildlife Diseases 2017 (in press).Google Scholar
  27. Matuschek, E., D. Brown, and G. Kahlmeter. 2014. Development of the EUCAST disk diffusion antimicrobial susceptibility testing method and its implementation in routine microbiology laboratories. Clinical Microbiology and Infection 20:O255-O266.CrossRefPubMedGoogle Scholar
  28. Middleton, J. H., and A. Ambrose. 2005. Enumeration and antibiotic resistance patterns of fecal indicator organisms isolated from migratory Canada geese (Branta canadensis). J Wild Dis 41:334-341.CrossRefGoogle Scholar
  29. Osterblad, M., K. Norrdahl, E. Korpimäki, and P. Huovinen. 2001. Antibiotic resistance. How wild are wild animals. Nature 409:37-38.PubMedGoogle Scholar
  30. Peak, N., C. W. Knapp, R. K. Yang, M. M. Hanfelt, M. S. Smith, D. S. Aga, and D. W. Graham. 2007. Abundance of six tetracycline resistance genes in wastewater lagoons at cattle feedlots with different antibiotic use strategies. Environ Microbiol 9:143-151.CrossRefPubMedGoogle Scholar
  31. Petersen MR, Grand JB, Dau CP (2000) Spectacled eider (Somateria fischeri). In: Rodewald PG (editor), Birds of North America, Ithaca.Google Scholar
  32. Polsfuss, S., G. V. Bloemberg, J. Giger, V. Meyer, E. C. Bottger, and M. Hombach. 2011. Practical approach for reliable detection of AmpC beta-lactamase-producing Enterobacteriaceae. J Clin Microbiol 49:2798-2803.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Robertson, G. J., and J.-P. L. Savard. 2002. Long-tailed duck (Clangula hyemalis).in P. G. Rodewald, editor. The Birds of North America Cornell Lab of Ornithology, Ithaca.Google Scholar
  34. Rolland, R. M., G. Hausfater, B. Marshall, and S. B. Levy. 1985. Antibiotic-resistant bacteria in wild primates: increased prevalence in baboons feeding on human refuse. Appl Environ Microbiol 49:791-794.PubMedPubMedCentralGoogle Scholar
  35. Sakoulas, G., and R. C. Moellering. 2008. Increasing antibiotic resistance among methicillin-resistant Staphylococcus aureus strains. Clinical infectious diseases 46:S360-S367.CrossRefPubMedGoogle Scholar
  36. Schmutz JA, MR Petersen, RF Rockwell (2011). Emperor Goose Chen R. P. G, editor. The Birds of North America Cornell Lab of Ornithology, Ithaca.Google Scholar
  37. Seng, P., M. Drancourt, F. Gouriet, B. La Scola, P. E. Fournier, J. M. Rolain, and D. Raoult. 2009. Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Infect Dis 49: 543-551.CrossRefPubMedGoogle Scholar
  38. Sjölund, M., J. Bonnedahl, J. Hernandez, S. Bengtsson, G. Cederbrant, J. Pinhassi, G. Kahlmeter, and B. Olsen. 2008. Dissemination of multidrug-resistant bacteria into the Arctic. Emerg Infect Dis 14:70-72.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Stedt, J., J. Bonnedahl, J. Hernandez, J. Waldenstrom, B. J. McMahon, C. Tolf, B. Olsen, and M. Drobni. 2015. Carriage of CTX-M type extended spectrum beta-lactamases (ESBLs) in gulls across Europe. Acta Vet Scand 57:74.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Thaller, M. C., L. Migliore, C. Marquez, W. Tapia, V. Cedeño, G. M. Rossolini, G. Gentile. 2010. Tracking acquired antibiotic resistance in commensal bacteria of Galapagos land iguanas: no man, no resistance. PLoS ONE 5:e8989.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Tsubokura, M., A. Matsumoto, K. Otsuki, S. B. Animas, T. Sanekata. 1995. Drug resistance and conjugative R plasmids in Escherichia coli strains isolated from migratory waterfowl. J Wildl Dis 31:352-357.CrossRefPubMedGoogle Scholar
  42. Wellington, E. M., A. B. Boxall, P. Cross, E. J. Feil, W. H. Gaze, P. M. Hawkey, A. S. Johnson-Rollings, D. L. Jones, N. M. Lee, W. Otten, C. M. Thomas, and A. P. Williams. 2013. The role of the natural environment in the emergence of antibiotic resistance in gram-negative bacteria. Lancet Infect Dis 13:155-165.CrossRefPubMedGoogle Scholar

Copyright information

© EcoHealth Alliance (Outside the U.S.A.) 2017

Authors and Affiliations

  • Andrew M. Ramey
    • 1
  • Jorge Hernandez
    • 2
  • Veronica Tyrlöv
    • 2
  • Brian D. Uher-Koch
    • 1
  • Joel A. Schmutz
    • 1
  • Clara Atterby
    • 3
  • Josef D. Järhult
    • 4
  • Jonas Bonnedahl
    • 5
    • 6
  1. 1.U.S. Geological Survey, Alaska Science CenterAnchorageUSA
  2. 2.Department of MicrobiologyKalmar County HospitalKalmarSweden
  3. 3.Zoonosis Science Center, Department of Medical Biochemistry and MicrobiologyUppsala UniversityUppsalaSweden
  4. 4.Section of Infectious Diseases, Department of Medical SciencesUppsala UniversityUppsalaSweden
  5. 5.Centre for Ecology and Evolution in Microbial Model SystemsLinnaeus UniversityKalmarSweden
  6. 6.Department of Infectious DiseasesKalmar County HospitalKalmarSweden

Personalised recommendations