, Volume 14, Issue 1, pp 171–177 | Cite as

Predicting the Potential Role of Non-human Hosts in Zika Virus Maintenance

  • Constantino González-SalazarEmail author
  • Christopher R. Stephens
  • Víctor Sánchez-Cordero
Short Communication


Arboviruses are often maintained in complex cycles involving vertebrates such as mammals or birds and blood-feeding mosquitoes. However, the role of wildlife hosts in their emergence or re-emergence in human populations has received little attention. The recent emergence of Zika virus in America, and previous occurrences of chikungunya and dengue, forces us to confront a potential new disease-emergence phenomenon. Using a spatial data mining framework to identify potential biotic interactions, based on the degree of co-occurrence between different species, we identified those mammal species with the highest potential for establishing mammal–vector interactions, considering as principal vector Aedes aegypti. Seven of the top ten identified mammal species with highest potential were bats, with two of them having previously been confirmed as positive hosts for dengue in Mexico. We hope that this will raise interest of Mexican public health authorities and academic institutions to assess the role of wild hosts in the maintenance and spread of arboviruses.


Wildlife host Dengue Chikungunya Zika virus Arbovirus Aedes aegypti 



Mosquito data were kindly provided by the National Commission for the Knowledge and Use of Biodiversity (Comision Nacional para el Conocimiento y Uso de la Biodiversidad, CONABIO) of Mexico. We deeply thank two anonymous referees for their significant comments and suggestions to improve this manuscript. We are grateful for financial support from PAPIIT-UNAM grant number IG200217. CGS is grateful for financial support from the Centro de Ciencias de la Complejidad and the Laboratorio Nacional de Ciencias de la Complejidad.


  1. Aguilar-Setién A, Romero-Almaraz ML, Sánchez-Hernández C, Figueroa R, Juárez-Palma LP, García-Flores MM, Vázquez-Salinas C, Salas-Rojas M, Hidalgo-Martínez AC, Pierlé SA, García-Estrada C, Ramos C (2008) Dengue virus in Mexican bats. Epidemiology and Infection 136:1678–1683. doi: 10.1017/S0950268808000460.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Anthony SJ, Ojeda-Flores R, Rico-Chávez O, Navarrete-Macias I, Zambrana-Torrelio CM, Rostal MK, Epstein JH, Tipps T, Liang E, Sanchez-Leon M, Sotomayor-Bonilla J, Aguirre AA, Ávila-Flores RA, Medellín RA, Goldstein T, Suzán G, Daszak P, Lipkin WI (2013) Coronaviruses in bats from Mexico. Journal of General Virology 94:1028–1038. doi: 10.1099/vir.0.049759-0.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Berzunza-Cruz M, Rodríguez-Moreno Á, Gutiérrez-Granados G, González-Salazar C, Stephens CR, Hidalgo-Mihart M, Marina CF, Rebollar-Téllez EA, Bailón-Martínez D, Balcells CD, Ibarra-Cerdeña CN, Sánchez-Cordero V, Becker I (2015) Leishmania (L.) mexicana infected bats in Mexico: novel potential reservoirs. PLOS Neglected Tropical Diseases 9:1–15. doi: 10.1371/journal.pntd.0003438.CrossRefGoogle Scholar
  4. Blum JD, Conway PH, Sharfstein JM (2016) Zika virus in the Americas—yet another arbovirus threat. New England Journal of Medicine 493–494. doi: 10.1056/NEJMp1002530.
  5. Chávez OR, Flores RO, Bonilla JS, Zambrana-Torrelio C, Rubio EL, Aguirre AA, Suzán G (2015) Viral diversity of bat communities in human-dominated landscapes in Mexico. Veterinaria México OA 2:1–22.Google Scholar
  6. Chen LH, Hamer DH (2016) Zika virus: rapid spread in the Western hemisphere. Annals of Internal Medicine. doi: 10.7326/M16-0150.Google Scholar
  7. Cruz-Salazar B, Ruiz-Montoya L, Vázquez-Domínguez E, Navarrete-Gutiérrez D, Espinoza-Medinilla EE, Vázquez L-B (2016) Genetic diversity of Didelphis virginiana related to different levels of disturbance in the Highlands and the Central Depression regions of Chiapas, Mexico. Journal of Tropical Ecology 32:146–157. doi: 10.1017/S0266467416000080.CrossRefGoogle Scholar
  8. De Almeida Curi NH, Miranda I, Talamoni SA (2006) Serologic evidence of Leishmania infection in free-ranging wild and domestic canids around a Brazilian National Park. Memorias do Instituto Oswaldo Cruz 101:99–101. doi: 10.1590/S0074-02762006000100019.CrossRefGoogle Scholar
  9. de Thoisy B, Lacoste V, Germain A, Muñoz-Jordán J, Colón C, Mauffrey J-F, Delaval M, Catzeflis F, Kazanji M, Matheus S, Dussart P, Morvan J, Setién AA, Deparis X, Lavergne A (2009) Dengue infection in neotropical forest mammals. Vector-Borne and Zoonotic Diseases 9:157–170. doi: 10.1089/vbz.2007.0280.CrossRefPubMedGoogle Scholar
  10. Dick GWA, Kitchen SF, Haddow AJ (1952) Zika virus (I). Isolations and serological specificity. Transactions of the Royal Society of Tropical Medicine and Hygiene 46:509–520.CrossRefPubMedGoogle Scholar
  11. European Centre for Disease Prevention and Control (ECDC) (2015) Rapid risk assessment: Zika virus epidemic in the Americas: potential association with microcephaly and Guillain-Barré syndrome. Available from:
  12. Estrada A, Coates-Estrada R, Meritt D (1994) Non flying mammals and landscape changes in the tropical rain forest region of Los Tuxtlas, Mexico. Ecography (Cop) 17:229–241. doi: 10.1111/j.1600-0587.1994.tb00098.x.CrossRefGoogle Scholar
  13. González-Salazar C, Stephens CR, Marquet PA (2013) Comparing the relative contributions of biotic and abiotic factors as mediators of species’ distributions. Ecological Modelling 248:57–70. doi: 10.1016/j.ecolmodel.2012.10.007.CrossRefGoogle Scholar
  14. Grard G, Caron M, Mombo IM, Nkoghe D, Mboui Ondo S, Jiolle D, Fontenille D, Paupy C, Leroy EM (2014) Zika virus in Gabon (Central Africa)-2007: a new threat from Aedes albopictus? PLOS Neglected Tropical Diseases 8:1–6. doi: 10.1371/journal.pntd.0002681.CrossRefGoogle Scholar
  15. Hennessy C, Tsai CC, Beasley JC, Beatty WS, Zollner PA, Rhodes OE (2015) Elucidation of population connectivity in synanthropic mesopredators: using genes to define relevant spatial scales for management of raccoons and virginia opossums. Journal of Wildlife Management 79:112–121. doi: 10.1002/jwmg.812.CrossRefGoogle Scholar
  16. Herrera L (2010) Una revisión sobre reservorios de Trypanosoma (Schizotrypanum) cruzi (Chagas, 1909), agente etiológico de la Enfermedad de Chagas. Bol Malariol y Salud Ambient 50:3–15. doi: 10.1016/j.ft.2009.03.004.Google Scholar
  17. Kaddumukasa MA, Kayondo JK, Masiga D, Akol AM, Lutwama JJ, Masembe C (2015) High proportion of mosquito vectors in Zika forest, Uganda, feeding on humans has implications for the spread of new arbovirus pathogens. African Journal of Biotechnology 14:1418–1426. doi: 10.5897/AJB2015.14474.CrossRefGoogle Scholar
  18. Klimpel S, Mehlhorn H (2014) Bats (Chiroptera) as Vectors of Diseases and Parasites. Parasitology Research Monographs. Heidelberg: Springer.CrossRefGoogle Scholar
  19. Kraemer MUG, Sinka ME, Duda KA, Mylne AQN, Shearer FM, Barker CM, Moore CG, Carvalho RG, Coelho GE, Bortel W Van, Hendrickx G, Schaffner F, Elyazar IR, Teng HJ, Brady OJ, Messina JP, Pigott DM, Scott TW, Smith DL, William Wint GR, Golding N, Hay SI (2015) The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. Elife 4:1–18. doi: 10.7554/eLife.08347.CrossRefGoogle Scholar
  20. Lefèvre T, Gouagna LC, Dabiré KR, Elguero E, Fontenille D, Renaud F, Costantini C, Thomas F (2009) Beyond nature and nurture: phenotypic plasticity in blood-feeding behavior of Anopheles gambiae s.s. when humans are not readily accessible. American Journal of Tropical Medicine and Hygeine 81:1023–1029. doi: 10.4269/ajtmh.2009.09-0124.CrossRefGoogle Scholar
  21. López-Cancino SA, Tun-Ku E, De la Cruz-Felix HK, Ibarra-Cerdena CN, Izeta-Alberdi A, Pech-May A, Mazariegos-Hidalgo CJ, Valdez-Tah A, Ramsey JM (2015) Landscape ecology of Trypanosoma cruzi in the southern Yucatan Peninsula. Acta Tropica 151:58–72. doi: 10.1016/j.actatropica.2015.07.021.CrossRefPubMedGoogle Scholar
  22. Lucey DR, Gostin LO (2016) The emerging Zika pandemic: enhancing preparedness. Journal of the American Medical Association. doi: 10.1001/jama.2016.0904.Google Scholar
  23. Machain-Williams C, López-Uribe M, Talavera-Aguilar L, Vera-Escalante L, Puerto-Manzano F, Ulloa A, Farfán-ale JA, Garcia-Rejon J, Blitvich BJ, Alba M (2013) Serologic evidence of flavivirus infection in bats in the Yucatan peninsula of Mexico. Wildlife Disease Association 49:1–8. doi: 10.7589/2012-12-318.Serologic.CrossRefGoogle Scholar
  24. Martínez-Hernández F, Rendon-Franco E, Gama-Campillo LM, Villanueva-García C, Romero-Valdovinos M, Maravilla P, Alejandre-Aguilar R, Rivas N, Córdoba-Aguilar A, Muñoz-García CI, Villalobos G (2014) Follow up of natural infection with Trypanosoma cruzi in two mammals species, Nasua narica and Procyon lotor (Carnivora: Procyonidae): evidence of infection control? Parasites and Vectors 7:405. doi: 10.1186/1756-3305-7-405.CrossRefPubMedPubMedCentralGoogle Scholar
  25. McCarthy M (2016) Zika virus was transmitted by sexual contact in Texas, health officials report. BMJ 352:i720. doi: 10.1136/bmj.i720.CrossRefPubMedGoogle Scholar
  26. Medellín RA, Equihua M, Amin MA (2000) Bat diversity and abundance as indicators of disturbance in neotropical rainforest. Conservation Biology 14:1666–1675. doi: 10.1046/j.1523-1739.2000.99068.x.CrossRefGoogle Scholar
  27. Musso D, Nilles EJ, Cao-Lormeau VM (2014) Rapid spread of emerging Zika virus in the Pacific area. Clinical Microbiology and Infection 20:O595–O596. doi: 10.1111/1469-0691.12707.CrossRefPubMedGoogle Scholar
  28. Petersen E, Wilson ME, Touch S, McCloskey B, Mwaba P, Bates M, Dar O, Mattes F, Kidd M, Ippolito G, Azhar EI, Zumla A (2016) Unexpected and rapid spread of Zika virus in the Americas—implications for public health preparedness for mass gatherings at the 2016 Brazil Olympic Games. International Journal of Infectious Diseases 1–5. doi: 10.1016/j.ijid.2016.02.001.
  29. Quan PL, Firth C, Conte JM, Williams SH, Zambrana-Torrelio CM, Anthony SJ, Ellison JA, Gilbert AT, Kuzmin I V, Niezgoda M, Osinubi MO, Recuenco S, Markotter W, Breiman RF, Kalemba L, Malekani J, Lindblade KA, Rostal MK, Ojeda-Flores R, Suzán G, Davis LB, Blau DM, Ogunkoya AB, Alvarez Castillo DA, Moran D, Ngam S, Akaibe D, Agwanda B, Briese T, Epstein JH, Daszak P, Rupprecht CE, Holmes EC, Lipkin WI (2013) Bats are a major natural reservoir for hepaciviruses and pegiviruses. Proceedings of the National Academy of Sciences United States of America 110:8194–8199. doi: 10.1073/pnas.1303037110.CrossRefGoogle Scholar
  30. Reagan RL, Rumbaugh H, Nelson H, Brueckner AL (1955) Effect of Zika virus and Bwamba virus in the cave bat (Myotis lucifugus). Transactions of the American Microscopical Society 74:77–79.CrossRefGoogle Scholar
  31. Ruiz-Piña HA, Cruz-Reyes A (2002) The opossum Didelphis virginiana as a synanthropic reservoir of Trypanosoma cruzi in Dzidzilché, Yucatán, México. Memorias do Instituto Oswaldo Cruz 97:613–620. doi: 10.1590/S0074-02762002000500003.CrossRefPubMedGoogle Scholar
  32. Sotomayor-Bonilla J, Chaves A, Rico-Chávez O, Rostal MK, Ojeda-Flores R, Salas-Rojas M, Aguilar-Setien A, Ibáñez-Bernal S, Barbachano-Guerrero A, Gutiérrez-Espeleta G, Aguilar-Faisal JL, Aguirre AA, Daszak P, Suzán G (2014) Short report: dengue virus in bats from southeastern Mexico. American Journal of Tropical Medicine and Hygeine 91:129–131. doi: 10.4269/ajtmh.13-0524.CrossRefGoogle Scholar
  33. Stephens CR, González-Salazar C, Sánchez-Cordero V, Becker I, Rebollar-Tellez E, Rodríguez-Moreno Á, Berzunza-Cruz M, Domingo Balcells C, Gutiérrez-Granados G, Hidalgo-Mihart M, Ibarra-Cerdeña CN, Ibarra López P, Iñiguez Dávalos LI, Ramírez Martínez MM (2016) Can you judge a disease host by the company it keeps? Predicting disease hosts and their relative importance: a case study for Leishmaniasis. PLOS Neglected Tropical Diseases, 10(10):e0005004. doi: 10.1371/journal.pntd.0005004.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Stephens CR, Heau JG, González C, Ibarra-Cerdeña CN, Sánchez-Cordero V, González-Salazar C (2009) Using biotic interaction networks for prediction in biodiversity and emerging diseases. PLoS One 4:e5725. doi: 10.1371/journal.pone.0005725.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Turner PE, Morales NM, Alto BW, Remold SK (2010) Role of evolved host breadth in the initial emergence of an RNA virus. Evolution (N Y) 64:3273–3286. doi: 10.1111/j.1558-5646.2010.01051.x.Google Scholar
  36. Ventura CV, Maia M, Bravo-Filho V, Góis AL, Belfort R (2016) Zika virus in Brazil and macular atrophy in a child with microcephaly. Lancet 387:228. doi: 10.1016/S0140-6736(16)00006-4.CrossRefPubMedGoogle Scholar
  37. Villegas-García JC, Santillán-Alarcón S (2001) Sylvatic focus of American trypanosomiasis in the State of Morelos, Mexico. Revista de Biologia Tropical 49:685–688.PubMedGoogle Scholar
  38. Weaver SC, Barrett ADT (2004) Transmission cycles, host range, evolution and emergence of arboviral disease. Nature Reviews Microbiology 2:789–801. doi: 10.1038/nrmicro1006.CrossRefPubMedGoogle Scholar
  39. World Health Organization (WHO) (2016) Report Zika Situation Neurological Syndrome and Congenital Anomalies. Available from:
  40. Zanluca C, de Melo VCA, Mosimann ALP, dos Santos GIV, dos Santos CND, Luz K (2015) First report of autochthonous transmission of Zika virus in Brazil. Memorias do Instituto Oswaldo Cruz 110:569–572. doi: 10.1590/0074-02760150192.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Association for Ecology and Health 2017

Authors and Affiliations

  1. 1.C3 – Centro de Ciencias de la ComplejidadUniversidad Nacional Autónoma de MéxicoMexico CityMexico
  2. 2.Instituto de Ciencias NuclearesUniversidad Nacional Autónoma de MéxicoMexico CityMexico
  3. 3.Instituto de BiologíaUniversidad Nacional Autónoma de MéxicoMexico CityMexico

Personalised recommendations