EcoHealth

, Volume 13, Issue 1, pp 72–82 | Cite as

Coronavirus Infection and Diversity in Bats in the Australasian Region

  • C. S. Smith
  • C. E. de Jong
  • J. Meers
  • J. Henning
  • L- F. Wang
  • H. E. Field
Original Contribution

Abstract

Following the SARS outbreak, extensive surveillance was undertaken globally to detect and identify coronavirus diversity in bats. This study sought to identify the diversity and prevalence of coronaviruses in bats in the Australasian region. We identified four different genotypes of coronavirus, three of which (an alphacoronavirus and two betacoronaviruses) are potentially new species, having less than 90% nucleotide sequence identity with the most closely related described viruses. We did not detect any SARS-like betacoronaviruses, despite targeting rhinolophid bats, the putative natural host taxa. Our findings support the virus-host co-evolution hypothesis, with the detection of Miniopterus bat coronavirus HKU8 (previously reported in Miniopterus species in China, Hong Kong and Bulgaria) in Australian Miniopterus species. Similarly, we detected a novel betacoronavirus genotype from Pteropus alecto which is most closely related to Bat coronavirus HKU9 identified in other pteropodid bats in China, Kenya and the Philippines. We also detected possible cross-species transmission of bat coronaviruses, and the apparent enteric tropism of these viruses. Thus, our findings are consistent with a scenario wherein the current diversity and host specificity of coronaviruses reflects co-evolution with the occasional host shift.

Keywords

coronavirus SARS diversity bat Australia Asia 

References

  1. Anthony S, Ojeda-Flores R, Rico-Chávez O, Navarrete-Macias I, Zambrana-Torrelio C, Rostal M, et al. (2013). Coronaviruses in bats from Mexico. Journal of General Virology 94:1028-1038.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Applied Biosystems (2002) BigDye® Terminator v3.1 Cycle Sequencing Kit http://www3.appliedbiosystems.com/cms/groups/mcb_marketing/documents/generaldocuments/cms_081527.pdf. Accessed 15 October 2015
  3. Breed AC, Field HE, Smith CS, Edmonston J, Meers J (2010). Bats Without Borders: Long-Distance Movements and Implications for Disease Risk Management. Ecohealth 7:204-212.CrossRefPubMedGoogle Scholar
  4. Brown LD, Cat TT, DasGupta A (2001). Interval Estimation for a proportion. Statistical Science 16:101-133.Google Scholar
  5. Chu DK, Poon LL, Chan KH, Chen H, Guan Y, Yuen KY, et al. (2006). Coronaviruses in bent-winged bats (Miniopterus spp.). Journal of General Virology 87:2461-2466.CrossRefPubMedGoogle Scholar
  6. Churchill S (2008). Australian bats, 2nd edition. Allen & Unwin, Crows Nest, New South Wales, Australia.Google Scholar
  7. Cui J, Han N, Streicker D, Li G, Tang X, Shi Z, et al. (2007). Evolutionary relationships between bat coronaviruses and their hosts. Emerging Infectious Diseases 13:1526-1532.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Dominguez SR, OShea TJ, Oko LM, Holmes KV (2007). Detection of group 1 coronaviruses in bats in North America. Emerging Infectious Diseases 13:1295-300. DOI:10.3201/eid1309.070491.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Drexler JF, Corman VM, Drosten C (2014). Ecology, evolution and classification of bat coronaviruses in the aftermath of SARS. Antiviral Research 101:45-56.CrossRefPubMedGoogle Scholar
  10. Drexler JF, Gloza-Rausch F, Glende J, Corman VM, Muth D, Goettsche M, et al. (2010). Genomic Characterization of Severe Acute Respiratory Syndrome-Related Coronavirus in European Bats and Classification of Coronaviruses Based on Partial RNA-Dependent RNA Polymerase Gene Sequences. Journal of Virology 84:11336-11349.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Drosten C, Gunther S, Preiser W, van der Werf S, Brodt HR, Becker S, et al. (2003). Identification of a novel coronavirus in patients with severe acute respiratory syndrome. New England Journal of Medicine 348:1967-1976.CrossRefPubMedGoogle Scholar
  12. Ge X, Li J, Yang X, Chmura A, Zhu G, Epstein J, et al. (2013). Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature 503:535-538.CrossRefPubMedGoogle Scholar
  13. Gloza-Rausch F, Ipsen A, Seebens A, Gottsche M, Panning M, Felix Drexler J, et al. (2008). Detection and Prevalence Patterns of Group I Coronaviruses in Bats, Northern Germany. Emerging Infectious Diseases 14:626-631.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Hutcheon JM, and Kirsch JAW (2006). A moveable face: deconstructing the Microchiroptera and a new classification of extant bats. Acta Chiropterologica 8:1-10.CrossRefGoogle Scholar
  15. International Committee on Taxonomy of Viruses (2011) Master species list #26 http://www.ictvonline.org/virusTaxonomy.asp?version=2011. Accessed 15 October 2015
  16. Lau SK, Che XY, Woo PC, Wong BH, Cheng VC, Woo GK, et al. (2005a). SARS coronavirus detection methods. Emerging Infectious Diseases 11:1108-1111.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Lau SK, Woo PC, Li KS, Huang Y, Tsoi HW, Wong BH, et al. (2005b). Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proceedings of the National Academy of Science 102:14040-14045.CrossRefGoogle Scholar
  18. Lau SK, Woo PC, Li KS, Huang Y, Wang M, Lam CS, et al. (2007). Complete genome sequence of bat coronavirus HKU2 from Chinese horseshoe bats revealed a much smaller spike gene with a different evolutionary lineage from the rest of the genome. Virology 367:428-439.CrossRefPubMedGoogle Scholar
  19. Lelli D, Papetti A, Sabelli C, Rosti E, Moreno A, Boniotti MB (2013). Detection of Coronaviruses in Bats of Various Species in Italy. Viruses 5:2679-2689.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Li W, Shi Z, Yu M, Ren W, Smith C, Epstein JH, et al. (2005). Bats are natural reservoirs of SARS-like coronaviruses. Science 310:676-679.CrossRefPubMedGoogle Scholar
  21. Memish ZA, Mishra N, Olival KJ, Fagbo SF, Kapoor V, Epstein JH, et al. (2013). Middle East respiratory syndrome coronavirus in bats, Saudi Arabia. Emerging Infectious Diseases 19:1819-1823.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Nei M, Kumar S (2000). Molecular evolution and phylogenetics. Oxford University Press, New York.Google Scholar
  23. Pfefferle S, Oppong S, Drexler JF, Gloza-Rausch F, Ipsen A, Seebens A, et al. (2009). Distant Relatives of Severe Acute Respiratory Syndrome Coronavirus and Close Relatives of Human Coronavirus 229E in Bats, Ghana. Emerging Infectious Diseases 15:1377-1384.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Poon LL, Chan KH, Peiris JS (2004). Crouching tiger, hidden dragon: the laboratory diagnosis of severe acute respiratory syndrome. Clinical Infectious Diseases 38:297-299.CrossRefPubMedGoogle Scholar
  25. Poon LL, Chu DK, Chan KH, Wong OK, Ellis TM, Leung YH, et al. (2005). Identification of a novel coronavirus in bats. Journal of Virology 79:2001-2009.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Smith CS, de Jong CE, Field HE (2010). Sampling small quantities of blood from microbats. Acta Chiropterologica 12(1):255–258.CrossRefGoogle Scholar
  27. Streicker DG, Turmelle AS, Vonhof MJ, Kuzmin IV, McCracken GF, Rupprecht CE. (2010) Host phylogeny constrains cross-species emergence and establishment of rabies virus in bats. Science 329:676-9. DOI:10.1126/science.1188836. [Online August 6, 2010].CrossRefPubMedGoogle Scholar
  28. Streicker DG, Lemey P, Velasco-Villa A, Rupprecht CE. (2012) Rates of Viral Evolution Are Linked to Host Geography in Bat Rabies. PLoS Pathogens. 8: e1002720. DOI:10.1371/journal.ppat.1002720 [Online May 17, 2012].CrossRefPubMedPubMedCentralGoogle Scholar
  29. Suzuki J, Sato R, Kobayashi T, Aoi T, Harasawa R (2014). Group B betacoronavirus in rhinolophid bats, Japan. Journal of Veterinary Medical Science 76:1267-1269.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Tamura K, Stecher G, Peterson D, Filipski A, and Kumar S (2013). MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution 30:2725-2729.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Tang XC, Zhang JX, Zhang SY, Wang P, Fan XH, Li LF, et al. (2006). Prevalence and genetic diversity of coronaviruses in bats from China. Journal of Virology 80:7481-7490.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Tsuda S, Watanabe S, Masangkay J, Mizutani T, Alviola P, Ueda N, et al. (2012). Genomic and serological detection of bat coronavirus from bats in the Philippines. Archives of Virology 157:2349-2355.CrossRefPubMedGoogle Scholar
  33. Vijaykrishna D, Smith GJ, Zhang JX, Peiris JS, Chen H, Guan Y (2007). Evolutionary insights into the ecology of coronaviruses. Journal of Virology 81:4012-4020.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Woo PC, Lau SK, Li KS, Poon RW, Wong BH, Tsoi HW, et al. (2006). Molecular diversity of coronaviruses in bats. Virology 351:180-187.CrossRefPubMedGoogle Scholar
  35. Yu M, Stevens V, Berry JD, Crameri G, McEachern J, Tu C, et al. (2008) Determination and application of immunodominant regions of SARS coronavirus spike and nucleocapsid proteins recognized by sera from different animal species. Journal of Immunological Methods 331:1-12. DOI:10.1016/j.jim.2007.11.009 [Online December 17, 2007].CrossRefPubMedGoogle Scholar
  36. Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus ADME, and Fouchier RAM (2012). Isolation of a Novel Coronavirus from a Man with Pneumonia in Saudi Arabia. New England Journal of Medicine 367:1814-1820.CrossRefPubMedGoogle Scholar

Copyright information

© International Association for Ecology and Health 2016

Authors and Affiliations

  • C. S. Smith
    • 1
    • 2
  • C. E. de Jong
    • 2
  • J. Meers
    • 1
  • J. Henning
    • 1
  • L- F. Wang
    • 3
  • H. E. Field
    • 2
    • 4
  1. 1.School of Veterinary ScienceThe University of QueenslandGattonAustralia
  2. 2.Department of Agriculture and FisheriesBiosecurity QueenslandBrisbaneAustralia
  3. 3.Program in Emerging Infectious DiseasesDuke-NUS Graduate Medical SchoolSingaporeSingapore
  4. 4.EcoHealth AllianceNew YorkUSA

Personalised recommendations