Advertisement

EcoHealth

, Volume 13, Issue 2, pp 339–349 | Cite as

Detection and Quantification of Vibrio cholerae, Vibrio parahaemolyticus, and Vibrio vulnificus in Coastal Waters of Guinea-Bissau (West Africa)

  • Ana Machado
  • Adriano A. Bordalo
Original Contribution

Abstract

V. cholerae, V. parahaemolyticus, and V. vulnificus are recognized human pathogens. Although several studies are available worldwide, both on environmental and clinical contexts, little is known about the ecology of these vibrios in African coastal waters. In this study, their co-occurrence and relationships to key environmental constraints in the coastal waters of Guinea-Bissau were examined using the most probable number-polymerase chain reaction (MPN-PCR) approach. All Vibrio species were universally detected showing higher concentrations by the end of the wet season. The abundance of V. cholerae (ISR 16S-23S rRNA) ranged 0–1.2 × 104 MPN/L, whereas V. parahaemolyticus (toxR) varied from 47.9 to 1.2 × 105 MPN/L. Although the presence of genotypes associated with virulence was found in environmental V. cholerae isolates, ctxA+ V. cholerae was detected, by MPN-PCR, only on two occasions. Enteropathogenic (tdh+ and trh+) V. parahaemolyticus were detected at concentrations up to 1.2 × 103 MPN/L. V. vulnificus (vvhA) was detected simultaneously in all surveyed sites only at the end of the wet season, with maximum concentrations of 1.2 × 105 MPN/L. Our results suggest that sea surface water temperature and salinity were the major environmental controls to all Vibrio species. This study represents the first detection and quantification of co-occurring Vibrio species in West African coastal waters, highlighting the potential health risk associated with the persistence of human pathogenic Vibrio species.

Keywords

Vibrio Coastal water Africa Human pathogen 

Notes

Acknowledgments

We thank Eva Amorim for statistical assistance and oceanographic database management. This study was partially funded through a PhD fellowship to A. Machado (SFRH/BD/46146/2008) co-financed by POPH/FSE, and a grant to A. Bordalo (PTDC/AAC-CLI/103539/2008). This research was also partially supported by the European Regional Development Fund (ERDF) through the COMPETE—Operational Competitiveness Programme and national funds through FCT—Foundation for Science and Technology, under the project “PEst-C/MAR/LA0015/2013.”

References

  1. Alam M, Hasan NA, Sadique A, Bhuiyan NA, Ahmed KU, Nusrin S, et al. (2006) Seasonal cholera caused by Vibrio cholerae serogroups O1 and O139 in the coastal aquatic environment of Bangladesh. Applied and Environmental Microbiology 72(6):4096–4104. doi: 10.1128/AEM.00066-06 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ansaruzzaman M, Lucas M, Deen JL, Bhuiyan NA, Wang XY, Safa A, et al. (2005) Pandemic serovars (O3: K6 and O4: K68) of Vibrio parahaemolyticus associated with diarrhea in Mozambique: Spread of the pandemic into the African continent. Journal of Clinical Microbiology 43(6):2559-2562. doi: 10.1128/JCM.43.6.2559-2562.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Barrett JE, Virginia RA, Wall DH, Cary SC, Adams BJ, Hacker AL, et al. (2006) Co-variation in soil biodiversity and biogeochemistry in northern and southern Victoria Land, Antarctica. Antarctic Science 18(4):535-548. doi: 10.1017/S0954102006000587 CrossRefGoogle Scholar
  4. Bej AK, Patterson DP, Brasher CW, Vickery MCL, Jones DD, Kaysner CA (1999) Detection of total and hemolysin-producing Vibrio parahaemolyticus in shellfish using multiplex PCR amplification of tl, tdh and trh. Journal of Microbiological Methods 36(3):215-225. doi: 10.1016/S0167-7012(99)00037-8 CrossRefPubMedGoogle Scholar
  5. Blackwell KD, Oliver JD (2008) The ecology of Vibrio vulnificus, Vibrio cholerae, and Vibrio parahaemolyticus in North Carolina estuaries. Journal of Microbiology 46(2):146-153. doi: 10.1007/s12275-007-0216-2 CrossRefGoogle Scholar
  6. Bockemühl J, Triemer A (1974) Ecology and epidemiology of Vibrio parahaemolyticus on the coast of Togo. Bulletin of the World Health Organization 51(4):353-360PubMedGoogle Scholar
  7. Bordalo AA (2003) Microbiological water quality in urban coastal beaches: The influence of water dynamics and optimization of the sampling strategy. Water Research 37(13):3233-3241. doi: 10.1016/S0043-1354(03)00152-0 CrossRefPubMedGoogle Scholar
  8. Bordalo AA, Savva-Bordalo J (2012) The water question under extreme poverty: The example of Bolama, Guinea-Bissau (West Africa). In: Water Governance—Challenges in Africa: Hydro-optimism or Hydro-pessimism? CEAUP Studies on Africa, Vol. 2, Ibrahima A (editor), Bern, Berlin, Bruxelles, Frankfurt am Main, New York, Oxford, Wien: Peter Lang, pp 143–164Google Scholar
  9. Bordalo AA, Savva-Bordalo J (2007) The quest for safe drinking water: An example from Guinea-Bissau (West Africa). Water Research 41(13):2978-2986. doi: 10.1016/j.watres.2007.03.021 CrossRefPubMedGoogle Scholar
  10. Brasher CW, DePaola A, Jones DD, Bej AK (1998) Detection of microbial pathogens in shellfish with multiplex PCR. Current Microbiology 37(2):101-107. doi: 10.1007/s002849900346 CrossRefPubMedGoogle Scholar
  11. Cantet F, Hervio-Heath D, Caro A, Le Mennec C, Monteil C, Quéméré C, et al. (2013) Quantification of Vibrio parahamolyticus, Vibrio vulnificus and Vibrio cholerae in French Mediterranean coastal lagoons. Research in Microbiology 164(8):867-874. doi: 10.1016/j.resmic.2013.06.005 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chun J, Huq A, Colwell RR (1999) Analysis of 16S-23S rRNA intergenic spacer regions of Vibrio cholerae and Vibrio mimicus. Applied and Environmental Microbiology 65(5):2202-2208.PubMedPubMedCentralGoogle Scholar
  13. Coly I, Sow AG., Seydi M, Martinez-Urtaza J (2013) Vibrio cholerae and Vibrio parahaemolyticus detected in seafood products from Senegal. Foodborne Pathogen and Disease 10(12):1050-1058. doi: 10.1089/fpd.2013.1523 CrossRefGoogle Scholar
  14. Dalsgaard A, Forslund A, Petersen A, Brown DJ, Dias F, Monteiro S, et al. (2000) Class 1 integron-borne, multiple-antibiotic resistance encoded by a 150-kilobase conjugative plasmid in epidemic Vibrio cholerae O1 strains isolated in Guinea-Bissau. Journal of Clinical Microbiology 38(10):3774-3779PubMedPubMedCentralGoogle Scholar
  15. Dalsgaard A, Mortensen HF, Mølbak K, Dias F, Serichantalergs O, Echeverria P (1996) Molecular characterization of Vibrio cholerae O1 strains isolated during cholera outbreaks in Guinea-Bissau. Journal of Clinical Microbiology 34(5):1189-1192PubMedPubMedCentralGoogle Scholar
  16. De R, Ghosh JB, Gupta SS, Takeda Y, Nair GB (2013) The role of Vibrio cholerae genotyping in Africa. Journal of Infectious Diseases 208(1):S32-S38. doi: 10.1093/infdis/jit199 CrossRefPubMedGoogle Scholar
  17. De Man JC (1983) MNP Tables, Corrected. European Journal of Applied Microbiology and Biotechnology 17(5):301-305. doi: 10.1007/BF00508025 CrossRefGoogle Scholar
  18. Dempster EL, Pryor KV, Francis D, Young JE, Rogers HJ (1999) Rapid DNA extraction from ferns for PCR-based analyses. Biotechniques 27(1):66-68PubMedGoogle Scholar
  19. Deter J, Lozach S, Derrien A, Véron A, Chollet J, Hervio-Heath D (2010) Chlorophyll a might structure a community of potentially pathogenic culturable Vibrionaceae. Insights from a one-year study of water and mussels surveyed on the French Atlantic coast. Environmental Microbiology Reports 2(1):185-191. doi: 10.1111/j.1758-2229.2010.00133.x CrossRefPubMedGoogle Scholar
  20. Drake SL, DePaola A, Jaynus LA (2007) An Overview of Vibrio vulnificus and Vibrio parahaemolyticus. Comprehensive Reviews in Food Science and Food Safety 6(4):120-144. doi: 10.1111/j.1541-4337.2007.00022.x CrossRefGoogle Scholar
  21. Fields PI, Popovic T, Waschsmuth K, Olsvik Ø (1992) Use of polymerase chain reaction for detection of toxigenic Vibrio cholerae O1 strains from the Latin American cholera epidemic. Journal of Clinical Microbiology 30(8): 2118-2121.PubMedPubMedCentralGoogle Scholar
  22. Fries JS, Characklis GW, Noble RT (2008) Sediment-water exchange of Vibrio sp. and fecal indicator bacteria: Implications for persistence and transport in the Neuse River Estuary, North Carolina, USA. Water Research 42(4-5):941-950. doi: 10.1016/j.watres.2007.09.006 CrossRefPubMedGoogle Scholar
  23. Fukushima H, Seki R (2004) Ecology of Vibrio vulnificus and Vibrio parahaemolyticus in brackish environments of the Sada River in Shimane Prefecture, Japan. FEMS Microbiology Ecology 48(2):221-229. doi: 10.1016/j.femsec.2004.01.009 CrossRefPubMedGoogle Scholar
  24. Gil AI, Louis VR, Rivera IN, Lipp E, Huq A, Lanata CF, et al. (2004) Occurrence and distribution of Vibrio cholerae in the coastal environment of Peru. Environmental Microbiology 6(7):699-706. doi: 10.1111/j.1462-2920.2004.00601.x CrossRefPubMedGoogle Scholar
  25. Gutierrez WCK, Klein SL, Lovell CR (2013) High frequency of virulence factor genes tdh, trh, and tlh in Vibrio parahaemolyticus strains isolated from a pristine estuary. Applied and Environmental Microbiology 79(7):2247-2252. doi: 10.1128/AEM.03792-12 CrossRefGoogle Scholar
  26. Igbinosa EO, Obi LC, Okoh AI (2009) Occurrence of potentially pathogenic vibrios in final effluents of a wastewater treatment facility in a rural community of the Eastern Cape Province of South Africa. Research in Microbiology 160(8):531-537. doi: 10.1016/j.resmic.2009.08.007 CrossRefPubMedGoogle Scholar
  27. Iida T, Park KS, Honda T (2006) Vibrio parahaemolyticus. In: Biology of Vibrios, Thompson FL, Austin B, Swings J (editors.), Washington, DC: ASM Press, pp 341–348Google Scholar
  28. Islam MS, Mahmud ZH, Ansaruzzaman M, Faruque SM, Talukder KA, Qadri F, et al. (2011) Phenotypic, genotypic, and antibiotic sensitivity patterns of strains isolated from the cholera epidemic in Zimbabwe. Journal of Clinical Microbiology 49(6):2325-2327. doi: 10.1128/JCM.00432-11 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Johnson CN, Bowers JC, Griffitt KJ, Molina V, Clostio RW, Pei S, et al. (2012) Ecology of Vibrio parahaemolyticus and Vibrio vulnificus in the coastal and estuarine waters of Louisiana, Maryland, Mississippi, and Washington (United States). Applied and Environmental Microbiology 78(20):7249-7257. doi: 10.1128/AEM.01296-12 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Johnson CN, Flowers AR, Noriea III NF, Zimmerman AM, Bowers JC, DePaola A, et al. (2010) Relationships between environmental factors and pathogenic Vibrios in the Northern Gulf of Mexico. Applied and Environmental Microbiology 76(21):7076-7084. doi: 10.1128/AEM.00697-10 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kendall M (1938) A new measure of rank correlation. Biometrika 30(1-2):81-89. doi: 10.1093/biomet/30.1-2.81 CrossRefGoogle Scholar
  32. Kim YB, Okuda J, Matsumoto C, Takahashi N, Hashimoto S, Nishibuchi M (1999) Identification of Vibrio parahaemolyticus strains at the species level by PCR targeted to the toxR Gene. Journal of Clinical Microbiology 37(4):1173-1177PubMedPubMedCentralGoogle Scholar
  33. Koh EG, Huyn JH, LaRock PA (1994) Pertinence of indicator organisms and sampling variables to Vibrio concentrations. Applied and Environmental Microbiology 60(10):3897-3900PubMedPubMedCentralGoogle Scholar
  34. Lipp EK, Rodriguez-Palacios C, Rose JB (2001) Occurrence and distribution of the human pathogen Vibrio vulnificus in a subtropical Gulf of Mexico estuary. Hydrobiologia 460(1-3):165-173. doi: 10.1023/A:1013127517860 CrossRefGoogle Scholar
  35. Luan X, Chen J, Liu Y, Jia J, Liu R, Zhang XH (2008) Rapid quantification of Vibrio parahaemolyticus in seafood by MPN-PCR. Current Microbiology 57(3):218-221. doi: 10.1007/s00284-008-9177-x CrossRefPubMedGoogle Scholar
  36. Luquero FJ, Na Banga C, Remartínez D, Palma PP, Baron E, Grais RF (2011) Cholera epidemic in Guinea-Bissau (2008): The Importance of ‘‘Place’’. PLoS ONE 6(5):e19005. doi: 10.1371/journal.pone.0019005 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Machado A, Bordalo AA (2014) Diversity and dynamics of the Vibrio community in well water used for drinking in Guinea-Bissau (West Africa). Environmental Monitoring and Assessment 186(9):5697-5709. doi: 10.1007/s10661-014-3813-7 CrossRefPubMedGoogle Scholar
  38. Miwa N, Nishio T, Arita Y, Kawamori F, Masuda T, Akiyama M (2003) Evaluation of MPN method combined with PCR procedure for detection and enumeration of Vibrio parahaemolyticus in seafood. Journal of the Food Hygienic Society of Japan 44(6):289-293. doi: 10.3358/shokueishi.44.289 CrossRefPubMedGoogle Scholar
  39. Mahmud ZH, Neogi SB, Kassu A, Mai Huong BT, Jahid IK, Islam MS, et al. (2008) Occurrence, seasonality and genetic diversity of Vibrio vulnificus in coastal seaweeds and water along the Kii Channel, Japan. FEMS Microbiology Ecology 64(2):209-218. doi: 10.1111/j.1574-6941.2008.00460.x CrossRefPubMedGoogle Scholar
  40. Neogi SB, Islam MS, Nair GB, Yamasaki S, Lara R J (2012). Occurrence and distribution of plankton-associated and free-living toxigenic Vibrio cholerae in a tropical estuary of a cholera endemic zone. Wetlands Ecology and Management 20(3):271-285. doi: 10.1007/s11273-012-9247-5 CrossRefGoogle Scholar
  41. Oliver JD, Pruzzo C, Vezzulli L, Kaper JB (2013) Vibrio species. In: Food microbiology: Fundamentals and frontiers, Doyle MP, Buchanan RL (editors), Washington: ASM Press, pp 401–440. doi: 10.1128/9781555818463.ch16
  42. Pfeffer CS, Hite MF, Oliver JD (2003) Ecology of Vibrio vulnificus in estuarine waters of eastern North Carolina. Applied and Environmental Microbiology 69(6):3526-3531. doi: 10.1128/AEM.69.6.3526-3531.2003 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Randa MA, Poltz MF, Lim E (2004) Effects of temperature and salinity on Vibrio vulnificus population dynamics as assessed by quantitative PCR. Applied and Environmental Microbiology 70(9):5469-5476. doi: 10.1128/AEM.70.9.5469-5476.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Rivera S, Lugo T, Hazen TC (1989) Autecology of Vibrio vulnificus and Vibrio parahaemolyticus in tropical waters. Water Research 23(7):923-931. doi: 10.1016/0043-1354(89)90018-3 CrossRefGoogle Scholar
  45. Taviani E, Ceccarelli D, Lazaro N, Bani S, Cappuccinelli P, Colwell RR, et al. (2008) Environmental Vibrio spp., isolated in Mozambique, contain a polymorphic group of integrative conjugative elements and class 1 integrons. FEMS Microbiology Ecology 64(1):45-54. doi: 10.1111/j.1574-6941.2008.00455.x CrossRefPubMedGoogle Scholar
  46. Thompson FL, Iida T, Swings J (2004a) Biodiversity of vibrios. Microbiology and Molecular Biology Reviews 68(3):403-431. doi: 10.1128/MMBR.68.3.403-431.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Thompson JR, Randa MA, Marcelino LA, Tomita-Mitchell A, Lim E, Polz MF (2004b) Diversity and dynamics of a north Atlantic coastal Vibrio community. Applied and Environmental Microbiology 70(7):4103-4110. doi: 10.1128/AEM.70.7.4103-4110.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Valia R, Taviani E, Spagnoletti M, Ceccarelli D, Cappuccinelli P, Colombo MM (2013) Vibrio cholerae O1 epidemic variants in Angola: a retrospective study between 1992 and 2006. Frontiers in Microbiology 4:354. doi: 10.3389/fmicb.2013.00354 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Vezzulli L, Colwell RR, Pruzzo C (2013). Ocean warming and spread of pathogenic vibrios in the aquatic environment. Microbial Ecology 65(4):817-825. doi: 10.1007/s00248-823012-0163-2 CrossRefPubMedGoogle Scholar
  50. Watkins WD, Cabelli VJ (1985) Effect of fecal pollution on Vibrio parahaemolyticus densities in an estuarine environment. Applied and Environmental Microbiology 49(5):1307-1313.PubMedPubMedCentralGoogle Scholar
  51. World Health Organization (2013) Cholera country profile: Guinea-Bissau. Retrieved from: http://www.who.int/cholera/countries/GuineaBissauCountryProfile2013.pdf
  52. World Health Organization (2014) Cholera, 2013. Weekly Epidemiological Record 89(31):345-356Google Scholar
  53. Yamamoto K, Wright AC, Kaper JB, Morris JB (1990) The cytolysin gene of Vibrio vulnificus: Sequence and relationship to the Vibrio cholerae El Tor hemolysin gene. Infection and Immunity 58(8):2706-2709PubMedPubMedCentralGoogle Scholar
  54. Zimmerman AM, DePaola A, Bowers JC, Krantz JA, Nordstrom JL, Johnson CN, et al. (2007) Variability of total and pathogenic Vibrio parahaemolyticus densities in northern Gulf of Mexico water and oysters. Applied and Environmental Microbiology 73(23):7589-7596. doi: 10.1128/AEM.01700-07 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Association for Ecology and Health 2016

Authors and Affiliations

  1. 1.Laboratory of Hydrobiology and Ecology, Institute of Biomedical Sciences (ICBAS-UP)University of PortoPortoPortugal
  2. 2.CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental ResearchUniversity of PortoPortoPortugal

Personalised recommendations