EcoHealth

, Volume 13, Issue 1, pp 39–48 | Cite as

Increased Morbidity and Mortality in Domestic Animals Eating Dropped and Bitten Fruit in Bangladeshi Villages: Implications for Zoonotic Disease Transmission

  • John J. Openshaw
  • Sonia Hegde
  • Hossain M. S. Sazzad
  • Salah Uddin Khan
  • M. Jahangir Hossain
  • Jonathan H. Epstein
  • Peter Daszak
  • Emily S. Gurley
  • Stephen P. Luby
Original Contribution

Abstract

We used data on feeding practices and domestic animal health gathered from 207 Bangladeshi villages to identify any association between grazing dropped fruit found on the ground or owners directly feeding bat- or bird-bitten fruit and animal health. We compared mortality and morbidity in domestic animals using a mixed effects model controlling for village clustering, herd size, and proxy measures of household wealth. Thirty percent of household heads reported that their animals grazed on dropped fruit and 20% reported that they actively fed bitten fruit to their domestic herds. Household heads allowing their cattle to graze on dropped fruit were more likely to report an illness within their herd (adjusted prevalence ratio 1.17, 95% CI 1.02–1.31). Household heads directly feeding goats bitten fruit were more likely to report illness (adjusted prevalence ratio 1.35, 95% CI 1.16–1.57) and deaths (adjusted prevalence ratio 1.64, 95% CI 1.13–2.4). Reporting of illnesses and deaths among goats rose as the frequency of feeding bitten fruit increased. One possible explanation for this finding is the transmission of bat pathogens to domestic animals via bitten fruit consumption.

Keywords

zoonotic disease domestic animals morbidity mortality bat- and bird-bitten fruit 

Notes

Acknowledgments

John Openshaw conducted this work with support from a TL1 Clinical Research Training Program of the Stanford Clinical and Translational Science Award to Spectrum (NIH TL1 TR 001084). This research protocol collecting the data used in this analysis was funded by a National Science Foundation (NSF) and a National Institute of Health (NIH) grant for Ecology and Evolution of Infectious Diseases, grant number no. 2R01-TW005869. icddr,b acknowledges with gratitude the commitment of NSF and NIH to its research efforts. icddr,b is thankful to the Governments of Australia, Bangladesh, Canada, Sweden, and the UK for providing core/unrestricted support.

References

  1. Anthony SJ, Epstein JH, Murray KA, et al. (2013) A strategy to estimate unknown viral diversity in mammals. MBio 4:e00598–13. doi:  10.1128/mBio.00598-13 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Antia R, Regoes RR, Koella JC, Bergstrom CT (2003) The role of evolution in the emergence of infectious diseases. Nature 426:658–661. doi:  10.1038/nature02104 CrossRefPubMedGoogle Scholar
  3. Bates D, Maechler M, Bolker B, Walker S (2014) lme4: linear mixed-effects models using Eigen and S4. R Package Version 1.1-6. http://CRAN.R-project.org/package=lme4
  4. Bhatia R, Narain JP (2010) Review paper: the challenge of emerging zoonoses in Asia pacific. Asia-Pacific Journal of Public Health 22:388–394. doi:  10.1177/1010539510370908 CrossRefPubMedGoogle Scholar
  5. Chakraborty A, Sazzad, HMS, Hossain, MJ, et al. (2015) Evolving epidemiology of Nipah virus infection in Bangladesh: evidence from outbreaks during 2010–2011. Epidemiology and Infection 1–10.Google Scholar
  6. Chowdhury S, Khan SU, Crameri G, et al. (2014) Serological evidence of henipavirus exposure in cattle, goats and pigs in Bangladesh. PLoS Neglected Tropical Diseases 8:e3302. doi:  10.1371/journal.pntd.0003302 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Daszak P, Cunningham AA, Hyatt AD (2001) Anthropogenic environmental change and the emergence of infectious diseases in wildlife. Acta Tropica 78:103–116.CrossRefPubMedGoogle Scholar
  8. Epstein JH, Prakash V, Smith CS, et al. (2008) Henipavirus infection in fruit bats (Pteropus giganteus), India. Emerging Infectious Diseases 14:1309. doi:  10.3201/eid1408.071492 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Epstein JH, Quan P-L, Briese T, et al. (2010) Identification of GBV-D, a novel GB-like flavivirus from old world frugivorous bats (Pteropus giganteus) in Bangladesh. PLoS Pathog 6:e1000972. doi:  10.1371/journal.ppat.1000972 CrossRefGoogle Scholar
  10. Field H, Young P, Yob JM, et al. (2001) The natural history of Hendra and Nipah viruses. Microbes and Infection 3:307–314. doi:  10.1016/S1286-4579(01)01384-3 CrossRefPubMedGoogle Scholar
  11. Fogarty R, Halpin K, Hyatt AD, et al. (2008) Henipavirus susceptibility to environmental variables. Virus Res 132:140–144. doi:  10.1016/j.virusres.2007.11.010 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Greenland S, Pearl J, Robins JM (1999) Causal diagrams for epidemiologic research.Epidemiology 10(1):37–48.CrossRefPubMedGoogle Scholar
  13. Hahn MB, Epstein JH, Gurley ES, et al. (2014) Roosting behaviour and habitat selection of Pteropus giganteus reveal potential links to Nipah virus epidemiology. J Appl Ecol 51:376–387. doi:  10.1111/1365-2664.12212 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Hegde S, Sazzad HMS, Hossain MJ, et al. (2013) Risk factor analysis for Nipah infection in Bangladesh, 2004 to 2012. American Journal of Tropical Medicine and Hygiene 89:279.Google Scholar
  15. Hossain MJ, Gurley ES, Montgomery JM, et al. (2008) Clinical presentation of Nipah virus infection in Bangladesh. Clin Infect Dis 46:977–984. doi:  10.1086/529147 CrossRefPubMedGoogle Scholar
  16. Hsu VP, Hossain MJ, Parashar UD, et al. (2004) Nipah virus encephalitis reemergence, Bangladesh. Emerging Infect Dis 10:2082–2087. doi:  10.3201/eid1012.040701 CrossRefPubMedPubMedCentralGoogle Scholar
  17. ICDDRB (2003) Outbreaks of encephalitis due to Nipah/Hendra-like Viruses, Western Bangladesh. ICDDRB Health and Science Bulletin 1:1–6.Google Scholar
  18. Jones KE, Patel NG, Levy MA, et al. (2008) Global trends in emerging infectious diseases. Nature 451:990–993. doi:  10.1038/nature06536 CrossRefPubMedGoogle Scholar
  19. Khan MAR (2001) Status and Distribution of Bats in Bangladesh with Notes on their Ecology. Zoo’s Print Journal 16:479–483.CrossRefGoogle Scholar
  20. Kumar K (1989) Indicators for measuring changes in income, food availability and consumption, and the natural resource base. US Agency for International Development AID Program Design and Evaluation Methodology No 12Google Scholar
  21. Looi L-M, Chua KB (2007) Lessons from the Nipah virus outbreak in Malaysia. Malays J Pathol 29:63–67.PubMedGoogle Scholar
  22. Luby SP, Gurley ES, Hossain MJ (2009) Transmission of human infection with Nipah virus. Clin Infect Dis 49:1743–1748. doi:  10.1086/647951 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Luis AD, Hayman DTS, O’Shea TJ, et al. (2013) A comparison of bats and rodents as reservoirs of zoonotic viruses: are bats special? Proceedings of the Royal Society B: Biological Sciences 280:20122753. doi:  10.1098/rspb.2012.2753 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Mahalingam S, Herrero LJ, Playford EG, et al. (2012) Hendra virus: an emerging paramyxovirus in Australia. Lancet Infect Dis 12:799–807. doi:  10.1016/S1473-3099(12)70158-5 CrossRefPubMedGoogle Scholar
  25. Marsh GA, Todd S, Ford A, et al. (2010) Genome Sequence Conservation of Hendra Virus Isolates during Spillover to Horses, Australia. Emerging Infect Dis 16:1767. doi:  10.3201/eid1611.100501 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Marsh GA, Wang LF (2012) Hendra and Nipah viruses: why are they so deadly? Curr Opin Virol 2:242–247. doi:  10.1016/j.coviro.2012.03.006 CrossRefPubMedGoogle Scholar
  27. McKenzie DJ (2005) Measuring inequality with asset indicators. Journal of Population Economics 18:229–260.CrossRefGoogle Scholar
  28. Olival KJ, Epstein JH, Wang LF, Field HE (2012) Are bats unique viral reservoirs? In: New Directions in Conservation Medicine: Applied Cases of Ecological Health, Aguirre AA, Ostfeld RS, Daszak P (editors), New York: Oxford University Press, pp 195–212.Google Scholar
  29. Olival KJ, Islam A, Yu M, et al. (2013) Ebola virus antibodies in fruit bats, bangladesh. Emerging Infect Dis 19:270–273. doi:  10.3201/eid1902.120524 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Parashar UD, Sunn LM, Ong F, et al. (2000) Case-control study of risk factors for human infection with a new zoonotic paramyxovirus, Nipah virus, during a 1998-1999 outbreak of severe encephalitis in Malaysia. J Infect Dis 181:1755–1759. doi:  10.1086/315457 CrossRefPubMedGoogle Scholar
  31. Paterson BJ, Mackenzie JS, Durrheim DN, Smith D (2011) A review of the epidemiology and surveillance of viral zoonotic encephalitis and the impact on human health in Australia. N S W Public Health Bull 22:99. doi:  10.1071/NB10076 CrossRefPubMedGoogle Scholar
  32. Patz JA, Daszak P, Tabor GM, et al. (2004) Unhealthy landscapes: Policy recommendations on land use change and infectious disease emergence. Environ Health Perspect 112:1092–1098.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Pulliam JRC, Epstein JH, Dushoff J, et al. (2012) Agricultural intensification, priming for persistence and the emergence of Nipah virus: a lethal bat-borne zoonosis. J R Soc Interface 9:89–101. doi:  10.1098/rsif.2011.0223 CrossRefPubMedCentralGoogle Scholar
  34. R Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/
  35. Rahman MA, Hossain MJ, Sultana S, et al. (2012) Date palm sap linked to Nipah virus outbreak in Bangladesh, 2008. Vector Borne Zoonotic Dis 12:65–72. doi:  10.1089/vbz.2011.0656 CrossRefPubMedGoogle Scholar
  36. Santos C, Fiaccone RL, Oliveira NF, et al. (2008) Estimating adjusted prevalence ratio in clustered cross-sectional epidemiological data. BMC Medical Research Methodology 8:80. doi:  10.1186/1471-2288-8-80 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Sudhakaran MR, Doss PS (2012) Food and foraging preferences of three pteropodid bats in southern India. Journal of Threatened Taxa 4:2295–2303.CrossRefGoogle Scholar
  38. Wolfe ND, Dunavan CP, Diamond J (2007) Origins of major human infectious diseases. Nature 447:279–283. doi:  10.1038/nature05775 CrossRefPubMedGoogle Scholar
  39. Yadav PD, Raut CG, Shete AM, et al. (2012) Detection of Nipah Virus RNA in Fruit Bat (Pteropus giganteus) from India. American Journal of Tropical Medicine and Hygiene 87:576–578. doi:  10.4269/ajtmh.2012.11-0416 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Association for Ecology and Health 2015

Authors and Affiliations

  • John J. Openshaw
    • 1
    • 4
  • Sonia Hegde
    • 2
  • Hossain M. S. Sazzad
    • 2
  • Salah Uddin Khan
    • 2
  • M. Jahangir Hossain
    • 2
  • Jonathan H. Epstein
    • 3
  • Peter Daszak
    • 3
  • Emily S. Gurley
    • 2
  • Stephen P. Luby
    • 1
    • 2
  1. 1.Division of Infectious Diseases and Geographic MedicineStanford UniversityStanfordUSA
  2. 2.International Center for Diarrheal Diseases Research, Bangladesh (icddr,b)DhakaBangladesh
  3. 3.EcoHealth AllianceNew YorkUSA
  4. 4.Stanford UniversityStanfordUSA

Personalised recommendations