Advertisement

EcoHealth

, Volume 10, Issue 2, pp 137–144 | Cite as

Temporal Distribution and Weather Correlates of Norway Rat (Rattus norvegicus) Infestations in the City of Madrid, Spain

  • Ibon Tamayo UriaEmail author
  • Jorge Mateu Mahiques
  • Lapo Mughini Gras
Original Contribution

Abstract

Urban Norway rats are challenging pests, posing significant health and economic threats. Implementing ecologically based integrated rodent management (EBIRM) programmes relies primarily on the understanding of ecological relationships between rodents and their environments, with emphasis on the processes influencing rodent populations in the target ecosystem. We investigated the temporal distribution of urban Norway rat infestations in Madrid, Spain, and tested for the association of such infestations with temperature, relative humidity and precipitation by fitting a multivariate Poisson generalized linear model to a 3-year (2006–2008) daily time series of 4,689 Norway rat sightings. Norway rat infestations showed a marked seasonality, peaking in the summer. Most Norway rat sightings were reported on Mondays. Minimum temperature and relative humidity were positively associated with Norway rat infestation, whereas the association with precipitation was negative. The time series was adequately explained by the model. We identified previously unrecognized time periods that are more prone to Norway rat infestation than others and generated hypotheses about the association between weather, human outdoor activity, resource availability, rodent activity and population size. This provided local authorities engaged in preserving urban ecosystem health with basic research information to predict future rodent outbreaks and support the implementation of EBIRM programmes in urban areas.

Keywords

urban pest Rattus norvegicus rat temporal distribution weather Madrid 

References

  1. AEMET (2010) Datos de la Agencia Estatal de Meteorología. http://www.aemet.es/es/portada. Accessed August 10, 2012
  2. Battersby SA (2002) Urban rat infestations: society’s response and the public health implications Ph.D. thesis. Guildford: University of SurreyGoogle Scholar
  3. Bonnefoy X, Kampen H, Sweeney K (2008) Public Health Significance of Urban Pests. World Health Organization, Regional Office for Europe, pp 387–419Google Scholar
  4. Breiman, L, Friedman JH (1985). Estimating Optimal Transformations for Multiple Regression and Correlation. Journal of the American Statistical Association. 80:580–598CrossRefGoogle Scholar
  5. Brown PR, Davies MJ, Croft JD, Singleton GR (2003). Impact of farm management practices on house mouse populations and crops in an irrigated farming system. In: Singleton GR, Hinds LA, Krebs CJ, Spratt DM. (eds). Rats, Mice and People: Rodent Biology and Management. ACIAR Monograph 96. Canberra, ACT: ACIAR, pp. 338–342.Google Scholar
  6. Davis S, Leirs H, Pech R, Zhang Z, Stenseth N (2004). On the economic benefit of predicting rodent outbreaks in agricultural systems. Crop Protection 23(4): 305-314.CrossRefGoogle Scholar
  7. De Masi E, Vilaça P, Razzolini MT (2009) Environmental conditions and rodent infestation in Campo Limpo district, Sao Paulo municipality, Brazil. International Journal of Environmental Health Research. 19(1):1–16PubMedCrossRefGoogle Scholar
  8. Cavia R, Cueto GR, Suarez OV (2009) Changes in rodent communities according to the landscape structure in an urban ecosystem. Landscape and Urban Planning. 90(1-2):11-19CrossRefGoogle Scholar
  9. Channon D, Cole M, Cole L. (2000) A long-term study of Rattus norvegicus in the London borough of Enfield using baiting returns as an indicator of sewer population levels. Epidemiology and Infection. 125(2):441-5.PubMedCrossRefGoogle Scholar
  10. Childs JE (1986) Size-dependent predation on rats (Rattus norvegicus) by house cats (Felis catus) in an urban setting. Journal of Mammalogy. 67(1):196-199CrossRefGoogle Scholar
  11. Colvin BA, Jackson WB (1999) Urban rodent control programs for the 21st century. In: Ecologically Based Management of Rodent Pests. ACIAR Monograph.59:494 Singleton GR, Hinds LA, Leirs H, Zhang Z (editors), Camberra: Australian Centre for International Agricultural Research, pp 242–257Google Scholar
  12. Epstein PR (2001) Climate change and emerging infectious diseases. Microbes and Infection. 3(9):747-54PubMedCrossRefGoogle Scholar
  13. Fernández MS, Cavia R, Cueto GR, Suárez OV (2007) Implementation and evaluation of an integrated program for rodent control in a Shantytown of Buenos Aires City, Argentina. Ecohealth 4:271–277CrossRefGoogle Scholar
  14. Frutos J (1994) Biología y control de plagas urbanas. Interamericana. MacGraw-Hill.Google Scholar
  15. Himsworth CG, Feng AYT, Parsons K, Kerr T, Patrick DM (2012) Using experiential knowledge to understand urban rat ecology: a survey of Canadian pest control professionals. Urban Ecosystems. doi: 10.1007/s11252-012-0261-4
  16. INE (2001) Instituto Nacional de Estadística de España. Censos y cifras oficiales de población (período 1900–1991). http://www.ine.es/. Accessed August 10, 2012
  17. Katsouyanni K, Schwartz J, Spix C, Touloumi G, Zmirou D, Zanobetti A, Wojtyniak B, Vonk JM, Tobias A, Ponka A, Media S, Bachárová L, Anderson HR (1996) Short term effects of air pollution on health: a European approach using epidemiologic time series data: the APHEA protocol. Journal of Epidemiology and Community Health 50(1): S12-S18.PubMedCrossRefGoogle Scholar
  18. Koul O, Cuperus GW (2007) Ecologically-Based Integrated Pest Management. CABI publishing, Wallingford, UK. 462 p.CrossRefGoogle Scholar
  19. Langton SD, Cowan DP, Meyer AN (2001) The occurrence of commensal rodents in dwellings as revealed by the 1996 English House Condition Survey. Journal of Applied Ecology. 38:699-709CrossRefGoogle Scholar
  20. Morello J, Gustavo G, Baxendale C, Rodriguez A, Matteucci S, Godagnone R, Casas R (2000) Urbanization and the consumption of fertile land and other ecological changes: the case of Buenos Aires. Environment and Urbanization 12: 119-132.CrossRefGoogle Scholar
  21. Mourier H, Winding O, Recasens JM, Sunesen E (1979) Guía de los animales parásitos de nuestras casas. Omega. 224 pGoogle Scholar
  22. Mughini Gras L, Patergnani M, Farina M (2012) Poison-based commensal rodent control strategies in urban ecosystems: some evidence against sewer-baiting. Ecohealth; 9(1):75-9PubMedCrossRefGoogle Scholar
  23. Nowak RM, Wilson DE (1999) Walker’s mammals of the world, 6th ed. Baltimore, Maryland: Johns Hopkins University Press.Google Scholar
  24. Patergnani M, Mughini Gras L, Poglayen G, Gelli A, Pasqualucci F, Farina M, Stancampiano L (2010) Environmental influence on urban rodent bait consumption. Journal of Pest Science. 83:347–359.CrossRefGoogle Scholar
  25. Retana-Barrantes JA, Solera M, Solano J, Alvarez H (2003) Efecto de la variabilidad climática sobre la fluctuación poblacional de la rata cañera (Sigmodon hispidus) en Cañas, Guanacaste. Tópicos Meteorológicos y Oceanográficos. 10(2) 91-8.Google Scholar
  26. Sacchi R, Gentilli A, Pilon N, Bernini F (2008) GIS-modelling the distribution of Rattus norvegicus in urban areas using non toxic attractive baits. Hystrix Italian Journal of Mammalogy. 19 (1):13-22.Google Scholar
  27. Singleton GR, Leirs H, Hinds LA, Zhang Z (1999) Ecologically-based management of rodent pests—re-evaluating our approach to an old problem. In: Ecologically Based Management of Rodent Pests. ACIAR Monograph.59:494, Singleton GR, Hinds LA, Leirs H, Zhang Z (editors), Camberra: Australian Centre for International Agricultural Research, pp 242–257Google Scholar
  28. Singleton GR, Sudarmaji, Tuan NP, Sang PM, Huan NH, Brown PR, Jacob J, Heong KL, Escalada MM (2003) Reduction in chemical use following integrated ecologically based rodent management. International Rice Research Notes 28(2): 33–35.Google Scholar
  29. Sio-Iong A (2010) Applied Time Series Analysis and Innovative Computing, Vol 59. Lecture Notes in Electrical Engineering. Berlin: SpringerGoogle Scholar
  30. Traweger D, Travnitzky R, Moser C, Walzer C, Bernatzky G (2006) Habitat preferences and distribution of the brown rat (Rattus norvegicus) in the city of Salzburg (Austria): implications for an urban rat management. Journal of Pest Science. 79(3):113-25.CrossRefGoogle Scholar
  31. Vadell MV, Cavia R, Suárez OV (2010) Abundance, age structure and reproductive patterns of Rattus norvegicus and Mus musculus in two areas of the city of Buenos Aires. International Journal of Pest Management. 56(4): 327–336CrossRefGoogle Scholar
  32. Vickery WL, Bider JR (1981) The influence of weather on rodent activity. Journal of Mammalogy. 62: 140-145CrossRefGoogle Scholar
  33. Villareal JA, Schlegel WM, Prange HD (2007) Thermal environment affects morphological and behavioural development of Rattus norvegicus. Physiology and Behavior. 91: 26-35CrossRefGoogle Scholar
  34. Whitaker JO (1980) The Audubon Society field guide to North American mammals. New York: Alfred A. Knopf Inc.Google Scholar
  35. White J, Horskins K, Wilson J (1998) The control of rodent damage in Australian macadamia orchards by manipulation of adjacent non-crop habitats. Crop Protection 17:353-357.CrossRefGoogle Scholar

Copyright information

© International Association for Ecology and Health 2013

Authors and Affiliations

  • Ibon Tamayo Uria
    • 1
    • 3
    • 6
    Email author
  • Jorge Mateu Mahiques
    • 2
  • Lapo Mughini Gras
    • 4
    • 5
  1. 1.Department of Health and Consumer AffairsGovernment of the Basque CountryDonostia-San SebastianSpain
  2. 2.Department of MathematicsUniversity of Jaume ICastellonSpain
  3. 3.Department of GeographyUniversity of AlcaláMadridSpain
  4. 4.Department of Veterinary Medical SciencesUniversity of BolognaBolognaItaly
  5. 5.Department of Veterinary Public Health and Food SafetyIstituto Superiore di SanitàRomeItaly
  6. 6.Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP)MadridSpain

Personalised recommendations