, Volume 10, Issue 1, pp 77–81 | Cite as

Amphibian Chytrid Prevalence in an Amphibian Community in Arid Australia

  • Joanne F. Ocock
  • Jodi J. L. Rowley
  • Trent D. Penman
  • Thomas S. Rayner
  • Richard T. Kingsford
Short Communication

The amphibian disease chytridiomycosis, caused by the pathogen Batrachochytrium dendrobatidis (Bd), has dramatically affected amphibians, causing population declines in over 200 species worldwide (Fisher et al. 2009). The disease is widespread, driving amphibian declines in North America (Muths et al. 2003; Briggs et al. 2005), Australia (Berger et al. 1998), Central America (Lips et al. 2006) and South America (Catenazzi et al. 2011). The variation in susceptibility to disease and mortality seen among host species, populations and locations is at least partially driven by interplay between external environmental and internal host-specific factors (Woodhams et al. 2007; Searle et al. 2011; Blaustein et al. 2012). While at a single location some species may be locally extirpated, others may persist (Lips et al. 2006). Amphibian infection prevalence and mortality rates due to chytridiomycosis are correlated with ambient environmental conditions: being highest during cooler months and at...


Arid Region Macquarie Marsh Amphibian Population Decline Pond Hydroperiod Zoospore Equivalent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aanensen DM, Fisher MC (2012) Global Bd-mapping project. Accessed on 15 July 2012.
  2. Bai C, Garner TWJ, and Li Y (2010). First evidence of Batrachochytrium dendrobatidis in China: discovery of chytridiomycosis in introduced american bullfrogs and native amphibians in the Yunnan Province, China. EcoHealth 7:127-134.PubMedCrossRefGoogle Scholar
  3. Bell RC, Garcia AVG, Stuart BL, and Zamudio KR (2011). High prevalence of the amphibian chytrid pathogen in Gabon. EcoHealth 8:116-120.PubMedCrossRefGoogle Scholar
  4. Berger L, Speare R, Daszak P, Green DE, Cunningham AA, Goggin CL, et al. (1998). Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America. Proceedings of the National Academy of Sciences of the United States of America 95:9031-9036.PubMedCrossRefGoogle Scholar
  5. Blaustein AR, Gervasi SS, Johnson PTJ, Hoverman JT, Belden LK, Bradley PW, et al. (2012). Ecophysiology meets conservation: understanding the role of disease in amphibian population declines. Philosophical Transactions of the Royal Society B: Biological Sciences 367:1688-1707.CrossRefGoogle Scholar
  6. BoM (2012) Bureau of Meterology. Climate Data. Accessed on 9th July 2012.
  7. Boyle DG, Boyle DB, Olsen V, Morgan JAT, and Hyatt AD (2004). Rapid quantitative detection of chytridiomycosis (Batrachochytrium dendrobatidis) in amphibian samples using real-time Taqman PCR assay. Diseases of Aquatic Organisms 60:141-148.PubMedCrossRefGoogle Scholar
  8. Briggs CJ, Vredenburg VT, Knapp RA, and Rachowicz LJ (2005). Investigating the population-level effects of chytridiomycosis: An emerging infectious disease of amphibians. Ecology 86:3149-3159.CrossRefGoogle Scholar
  9. Catenazzi A, Lehr E, Rodriguez LO, and Vredenburg VT (2011). Batrachochytrium dendrobatidis and the collapse of anuran species richness and abundance in the upper Manu National Park, Southeastern Peru. Conservation Biology 25:382-391. doi: 10.1111/j.1523-1739.2010.01604.x.PubMedCrossRefGoogle Scholar
  10. Fisher MC, Garner TWJ, and Walker SF (2009). Global emergence of Batrachochytrium dendrobatidis and amphibian chytridiomycosis in space, time, and host. Annual Review of Microbiology 63:291-310.PubMedCrossRefGoogle Scholar
  11. Hidalgo-Vila J, Diaz-Paniagua C, Marchand MA, and Cunningham AA (2012). Batrachochytrium dendrobatidis infection of amphibians in the Donana National Park, Spain. Diseases of Aquatic Organisms 98:113-119.PubMedCrossRefGoogle Scholar
  12. Hijmans RJ, Cameron SE, Parra JL, Jones PG and Jarvis A (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 1965-1978.CrossRefGoogle Scholar
  13. Hyatt AD, Boyle DG, Olsen V, Boyle DB, Berger L, Obendorf D, et al. (2007). Diagnostic assays and sampling protocols for the detection of Batrachochytrium dendrobatidis. Diseases of Aquatic Organisms 73:175-192.PubMedCrossRefGoogle Scholar
  14. Kaiser K, Pollinger J (2012) Batrachochytrium dendrobatidis shows high genetic diversity and ecological niche specificity among haplotypes in the Maya mountains of Belize. PLoS ONE 7:e32113.PubMedCrossRefGoogle Scholar
  15. Kinney VC, Heemeyer JL, Pessier AP and Lannoo MJ (2011). Seasonal pattern of Batrachochytrium dendrobatidis infection and mortality in Lithobates areolatus: affirmation of Vredenburg’s “10,000 Zoospore Rule”. PLoS ONE 6:e16708. e1670810.1371/journal.pone.0016708.Google Scholar
  16. Kriger KM, and Hero J-M (2007). The chytrid fungus Batrachochytrium dendrobatidis is non-randomly distributed across amphibian breeding habitats. Diversity and Distributions 13:781-788.CrossRefGoogle Scholar
  17. Kriger KM, and Hero JM (2008). Altitudinal distribution of chytrid (Batrachochytrium dendrobatidis) infection in subtropical Australian frogs. Austral Ecology 33:1022-1032.CrossRefGoogle Scholar
  18. Lannoo MJ, Petersen C, Lovich RE, Nanjappa P, Phillips C, Mitchell JC, et al. (2011). Fo frogs get their kicks on Route 66? Continental U.S. transect reveals spatial and temporal patterns of Batrachochytrium dendrobatidis infection. PLoS ONE 6:e22211.PubMedCrossRefGoogle Scholar
  19. Lips KR, Brem F, Brenes R, Reeve JD, Alford RA, Voyles J, et al. (2006). Emerging infectious disease and the loss of biodiversity in a Neotropical amphibian community. Proceedings of the National Academy of Sciences of the United States of America 103:3165-3170.PubMedCrossRefGoogle Scholar
  20. Murray K, Retallick R, McDonald KR, Mendez D, Aplin K, Kirkpatrick P, et al. (2010). The distribution and host range of the pandemic disease chytridiomycosis in Australia, spanning surveys from 1956–2007. Ecology 91:1557-1558.CrossRefGoogle Scholar
  21. Murray KA, Retallick RWR, Puschendorf R, Skerratt LF, Rosauer D, McCallum HI, et al. (2011). Assessing spatial patterns of disease risk to biodiversity: implications for the management of the amphibian pathogen, Batrachochytrium dendrobatidis. Journal of Applied Ecology 48:163-173.CrossRefGoogle Scholar
  22. Muths E, Corn PS, Pessier AP, and Green DE (2003). Evidence for disease-related amphibian decline in Colorado. Biological Conservation 110:357-365.CrossRefGoogle Scholar
  23. Rödder D, Veith M, and Lötters S (2008). Environmental gradients explaining the prevalence and intensity of infection with the amphibian chytrid fungus: the host’s perspective. Animal Conservation 11:513-517.CrossRefGoogle Scholar
  24. Rogers K, Ralph TJ (2010). Floodplain Wetlands Biota in the Murray-Darling Basin: Water and Habitat Requirements, Collingwood, VIC: CSIROGoogle Scholar
  25. Ron SR (2005). Predicting the distribution of the amphibian pathogen Batrachochytrium dendrobatidis in the New World. Biotropica 37:209-221.CrossRefGoogle Scholar
  26. Searle CL, Gervasi SS, Hua J, Hammond JI, Relyea RA, Olson DH, et al. (2011). Differential host susceptibility to Batrachochytrium dendrobatidis, an emerging amphibian pathogen.Conservation Biology 25:965-974.PubMedCrossRefGoogle Scholar
  27. Shelley D (2005). Flora and fauna of the Macquarie Marshes region. Department of Infrastruture, Planning and Natural Resources, Dubbo.Google Scholar
  28. Swei A, Rowley JJL, Rödder D, Diesmos MLL, Diesmos AC, and Briggs CJ, et al. (2011). Is chytridiomycosis an emerging infectious disease in Asia? PLoS ONE 6:e23179.PubMedCrossRefGoogle Scholar
  29. Thomas NJ and Middleton DSG (1997) World Atlas of Desertification (2nd edition), London: United National Environmental Programme.Google Scholar
  30. Voros J, Price LC, and Donnellan SC (2011). Batrachochytrium dendrobatidis on the endemic frog Litoria raniformis in South Australia. Herpetological Review 42:220 - 223.Google Scholar
  31. Vredenburg VT, Knapp RA, Tunstall TS, and Briggs CJ (2010). Dynamics of an emerging disease drive large-scale amphibian population extinctions. Proceedings of the National Academy of Sciences of the United States of America 107:9689-9694.PubMedCrossRefGoogle Scholar
  32. Wassens S (2008). Review of the past distribution and decline of the Southern Bell Frog Litoria raniformis in New South Wales. Australian Zoologist 34:446-452.CrossRefGoogle Scholar
  33. Wassens S, Maher M (2011) River regulation influences the composition and distribution of inland frog communities. River Research and Applications 27:238–246.CrossRefGoogle Scholar
  34. Woodhams DC, and Alford RA (2005). Ecology of chytridiomycosis in rainforest stream frog assemblages of tropical Queensland. Conservation Biology 19:1449-1459.CrossRefGoogle Scholar
  35. Woodhams DC, Ardipradja K, Alford RA, Marantelli G, Reinert LK, and Rollins-Smith LA (2007). Resistance to chytridiomycosis varies among amphibian species and is correlated with skin peptide defenses. Animal Conservation 10:409-417.CrossRefGoogle Scholar

Copyright information

© International Association for Ecology and Health 2013

Authors and Affiliations

  • Joanne F. Ocock
    • 1
  • Jodi J. L. Rowley
    • 2
    • 3
  • Trent D. Penman
    • 4
  • Thomas S. Rayner
    • 5
  • Richard T. Kingsford
    • 1
  1. 1.School of Biological, Earth and Environmental Sciences, Australian Wetlands, Rivers and Landscapes CentreUniversity of New South WalesSydney Australia
  2. 2.Australian MuseumSydney Australia
  3. 3.School of Marine and Tropical BiologyJames Cook UniversityTownsville Australia
  4. 4. Institute of Conservation Biology and Environmental Management, Centre for Environmental Risk Management of BushfiresUniversity of WollongongWollongong Australia
  5. 5.Research Institute for the Environment and LivelihoodsCharles Darwin UniversityDarwinAustralia

Personalised recommendations