Advertisement

EcoHealth

, Volume 10, Issue 1, pp 72–76 | Cite as

Characterization of the First Batrachochytrium dendrobatidis Isolate from the Colombian Andes, an Amphibian Biodiversity Hotspot

  • S. V. FlechasEmail author
  • E. M. Medina
  • A. J. Crawford
  • C. Sarmiento
  • M. E. Cárdenas
  • A. Amézquita
  • S. RestrepoEmail author
Short Communication

Abstract

The pathogenic chytrid fungus, Batrachochytrium dendrobatidis (Bd), constitutes a significant threat to more than 790 amphibian species occurring in Colombia. To date there is no molecular or morphological description of strains infecting Colombian populations. Here we report the genetic and morphological characterization of the first Colombian isolate of Bd (strain EV001). Our goals were threefold: (1) to characterize the morphology of EV001 using light and scanning electron microscopy, (2) to genotype this strain by direct sequencing of 17 polymorphic nuclear markers developed previously, and (3) to compare our findings with published reports on strains from other areas of the globe. We found that EV001 is morphologically consistent with previously described strains. Multi-locus genotyping suggested that EV001 is grouped genetically with Panamanian strains and is most similar to strain JEL203 isolated from a captive individual. This finding fills an important gap in our knowledge of Neotropical strains of Bd and provides a baseline for further evolutionary and functional analyses.

Keywords

Chytridiomycota Colombia Andes multi-locus genotyping morphological description 

Notes

Acknowledgments

This study was completed with financial support from the International Centre for Genetic Engineering and Biotechnology (CRP-ICGEB) (CRP/COL09-01), the Fundación para la Promoción de la Ciencia y la Tecnología, Banco de la República (Project No 2635) and the Association of Zoos and Aquariums (CEF 08-836). For assistance in the field we especially thank L. M. Arenas.

References

  1. Abramoff MD, Magelehaes PJ, Ram SJ (2004) Image processing with ImageJ. Biophotonics International 11:36-42Google Scholar
  2. AmphibiaWeb (2012) Information on amphibian biology and conservation [web application]. 2012. Berkeley, CA: AmphibiaWeb. http://amphibiaweb.org/. Accessed Apr 15, 2012
  3. Annis SL, Dastoor FP, Ziel H, Daszak P, Longcore JE (2004) A DNA-Based assay identifies Batrachochytrium dendrobatidis in amphibians. Journal of Wildlife Diseases 40:420-428PubMedGoogle Scholar
  4. Becker MH, Harris RN (2010) Cutaneous bacteria of the redback salamander prevent morbidity associated with a lethal disease. PLoS ONE 5:e10957. doi: 10.1371/journal.pone.0010957 PubMedCrossRefGoogle Scholar
  5. Bonaccorso E, Guayasamin JM, Méndez D, Speare R (2003) Chytridiomycosis as a possible cause of population declines in Atelopus cruciger (Anura: Bufonidae). Herpetological Review 34:331-334Google Scholar
  6. Boyle DG, Hyatt AD, Daszak P, Berger L, Longcore JE, Porter D, et al. (2003) Cryo-archiving of Batrachochytrium dendrobatidis and other chytridiomycetes. Diseases of Aquatic Organisms 56:59-64PubMedCrossRefGoogle Scholar
  7. Carnaval ACOQ, Puschendorf R, Peixoto OL, Verdade VK, Rodrigues MT (2006) Amphibian chytrid fungus broadly distributed in the brazilian atlantic rain forest. EcoHealth 3:41-48. doi: 10.1007/s10393-005-0008-2 CrossRefGoogle Scholar
  8. Crawford AJ, Lips KR, Bermingham E (2010) Epidemic disease decimates amphibian abundance, species diversity, and evolutionary history in the highlands of central Panama. Proceedings of the National Academy of Sciences of the United States of America 107:13777-13782. doi: 10.1073/pnas.0914115107 PubMedCrossRefGoogle Scholar
  9. Farrer RA, Weinert LA, Bielby J, Garner TWJ, Balloux F, Clare F, et al. (2011) Multiple emergences of genetically diverse amphibian-infecting chytrids include a globalized hypervirulent recombinant lineage. Proceedings of the National Academy of Sciences of the United States of America 108:18732-18736PubMedCrossRefGoogle Scholar
  10. Felsenstein J (1985) Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39:783-791CrossRefGoogle Scholar
  11. Flechas SV, Sarmiento C, Amézquita A (2012) Bd on the beach: High prevalence of Batrachochytrium dendrobatidis in the lowland forests of Gorgona Island (Colombia, South America). EcoHealth 9:298-302 doi: 10.1007/s10393-012-0771-9 PubMedCrossRefGoogle Scholar
  12. Grant T, Frost DR, Caldwell JP, Gagliardo R, Haddad C, F. B., Kok PJR, et al. (2006) Phylogenetic systematics of dart-poison frogs and their relatives (Amphibia: Athesphatanura: Dendrobatidae). Bulletin of the American Museum of Natural History 299:1-262CrossRefGoogle Scholar
  13. Hare MP, Palumbi SR (1999) The accuracy of heterozygous base callin from diploid sequence and resolution of haplotypes using allele-specific sequencing. Molecular Ecology 8:1750-1752. doi: 10.1046/j.1365-294x.1999.00738-1.x PubMedCrossRefGoogle Scholar
  14. Harris RN, Lauer A, Simon MA, Banning JL, Alford RA (2009) Addition of antifungal skin bacteria to salamanders ameliorates the effects of chytridiomycosis. Disease of Aquatic Organisms 83:11-16. doi: 10.3354/dao02004 CrossRefGoogle Scholar
  15. Heyer RW, Rand AS, Gonçalves da Cruz CA, Peixoto OL (1988) Decimations, extinctions, and colonizations of frog populations in southeast Brazil and their evolutionary implications. Biotropica 20:230-235CrossRefGoogle Scholar
  16. James TY, Litvintseva AP, Vilgalys R, Morgan JAT, Taylor JW, Fisher MC, et al. (2009) Rapid global expansion of the fungal disease chytridiomycosis into declining and healthy amphibian populations. PLoS Pathogens:5: e1000458. doi: 10.1371/journal.ppat.1000458 PubMedCrossRefGoogle Scholar
  17. Lips KR, Brem F, Brenes R, Reeve JD, Alford RA, Voyles J, et al. (2006) Emerging infectious disease and the loss of biodiversity in a Neotropical amphibian community. Proceedings of the National Academy of Sciences of the United States of America 103:3165-3170. doi: 10.1073/pnas.0506889103 PubMedCrossRefGoogle Scholar
  18. Lips KR, Diffendorfer J, Mendelsohn JRI, Sears MW (2008) Riding the wave: Reconciling the roles of disease and climate change in amphibian declines. PLoS Biology 6:e72. doi: 10.1371/journal.pbio.0060072 PubMedCrossRefGoogle Scholar
  19. Longcore JE, Pessier AP, Nichols DK (1999) Batrachochytrium dendrobatidis gen. et sp. nov., a chytrid pathogenic to amphibians. Mycologia 91:219-227CrossRefGoogle Scholar
  20. Lüddecke, H (2003) Space use, cave choice, and spatial learning in the dendrobatoid frog Colostethus palmatus. Amphibia-Reptilia 24:37-46CrossRefGoogle Scholar
  21. Lynch JD, Grant T (1998) Dying frogs in western Colombia: Catastrophe or trivial observation? Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales 22:149-152Google Scholar
  22. Morehouse EA, James TY, Ganley ARD, Vilgalys R, Berger L, Murphys PJ, et al. (2003) Multilocus sequence typing suggests the chytrid pathogen of amphibians is a recently emerged clone. Molecular Ecology 12:395-403. doi: 10.1046/j.1365-294X.2003.01732.x PubMedCrossRefGoogle Scholar
  23. Morgan JA, Vredenburg VT, Rachowicz LJ, Knapp RA, Stice MJ, Tunstall T, et al. (2007) Population genetics of the frog-killing fungus Batrachochytrium dendrobatidis. Proceedings of the National Academy of Sciences of the United States of America 104:13845-13850PubMedCrossRefGoogle Scholar
  24. Rachowicz LJ, Hero JM, Alford RA, Taylor JW, Morgan JAT, Vredenburg VT, et al. (2005) The novel and endemic pathogen hypotheses: Competing explanations for the origin of emerging infectious diseases of wildlife. Conservation Biology 19:1441-1448. doi: 10.1111/j.1523-1739.2005.00255.x CrossRefGoogle Scholar
  25. Ron SR, Duellman WE, Coloma LA, Bustamante MR (2003) Population decline of the Jambato toad Atelopus ignescens (Anura: Bufonidae) in the Andes of Ecuador. Journal of Herpetology 37:116-126CrossRefGoogle Scholar
  26. Rueda-Almonacid JV, Lynch JD, Amézquita A (2004) Libro Rojo de los Anfibios de Colombia. Conservación Internacional Colombia, Instituto de Ciencias Naturales - Universidad Nacional de Colombia, Ministerio de Medio Ambiente, Bogotá, Colombia.Google Scholar
  27. Ruíz A, Rueda-Almonacid JV (2008) Batrachochytrium dendrobatidis and chytridiomycosis in anuran amphibians of Colombia. EcoHealth 5:27-33. doi: 10.1007/s10393-008-0159-z PubMedCrossRefGoogle Scholar
  28. Ruiz-Carranza PM, Ardila-Robayo MC, Lynch JD (1996) Lista actualizada de la fauna de Amphibia de Colombia. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales 20:365-415Google Scholar
  29. Saitou N, Nei M (1987) The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4:406-425PubMedGoogle Scholar
  30. Schloegel LM, Toledo LF, Longcore JE, Greenspan SE, Vieira CA, Lee M, et al. (2012) Novel, panzootic and hybrid genotypes of amphibian chytridiomycosis associated with the bullfrog trade. Molecular Ecology 21:5162-5177. doi: 10.1111/j.365-294x.2012.05710.x PubMedCrossRefGoogle Scholar
  31. Skerratt LF, Berger L, Speare R, Cashins S, McDonald KR, Phillot AD, et al. (2007) Spread of chytridiomycosis has caused the rapid global decline and extinction of frogs. EcoHealth 4:125-134. doi: 10.1007/s10393-007-0093-5 CrossRefGoogle Scholar
  32. Swofford DL (2000) PAUP* Phylogenetic Analysis Using Parsimony (and Other Methods). Sinauer Associates, Sunderland, MA.Google Scholar
  33. Urbina JC, Galeano SP (2011) Batrachochytrium dendrobatidis detected in amphibians of the central andean cordillera of Colombia. Herpetological Review 42:558-560Google Scholar
  34. Velásquez-Escobar BE, Castro F, Bolívar-G W, Herrera MI (2008) Infección por el hongo Batrachochytrium dendrobatidis en anuros de la cordillera occidental de Colombia. Herpetotrópicos 4:65-70Google Scholar
  35. Voyles J, Young S, Berger L, Campbell C, Voyles WF, Dinudom A, et al. (2009) Pathogenesis of chytridiomycosis, a cause of catastrophic amphibian declines. Science 326:582-585. doi: 10.1126/science.1176765 PubMedCrossRefGoogle Scholar
  36. Wake DB, Vredenburg VT (2008) Are we in the midst of the sixth mass extinction? A view from the world amphibians. Proceedings of the National Academy of Sciences of the United States of America 105:11466-11473. doi: 10.1073/pnas.0801921105 PubMedCrossRefGoogle Scholar
  37. Werner F (1899) Über Reptilien und Batrachier aus Columbien und Trinidad. Verhandlungen des Zoologisch-Botanischen Vereins in Wien 49: 470-484Google Scholar
  38. Woodhams DC, Vredenburg VT, Simon MA, Billherimer D, Shakhtour B, Shyr Y, et al. (2007) Symbiotic bacteria contribute to innante immune defenses of the threatened mountain yellow-legged frog, Rana muscosa. Biological Conservation 138:390-398CrossRefGoogle Scholar
  39. Young BE, Lips KR, Reaser JK, Ibáñez DR, Salas AW, Cedeño JR, et al. (2001) Population declines and priorities for amphibian conservation in Latin America. Conservation Biology 15:1213-1223. doi:  10.1111/j.1523-1739.2001.00218.x CrossRefGoogle Scholar

Copyright information

© International Association for Ecology and Health 2013

Authors and Affiliations

  • S. V. Flechas
    • 1
    Email author
  • E. M. Medina
    • 1
  • A. J. Crawford
    • 1
    • 2
  • C. Sarmiento
    • 1
    • 2
  • M. E. Cárdenas
    • 1
  • A. Amézquita
    • 1
  • S. Restrepo
    • 1
    Email author
  1. 1.Department of Biological SciencesUniversidad de los AndesBogotáColombia
  2. 2.Smithsonian Tropical Research InstituteAncónRepublic of Panama

Personalised recommendations